Infinitely many solutions to fourth order superlinear periodic problems

被引:20
作者
Conti, M
Terracini, S
Verzini, G
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20126 Milan, Italy
关键词
oscillating solutions; fourth order equations; boundary value problems; variational methods;
D O I
10.1090/S0002-9947-03-03514-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new min-max approach to the search of multiple T{periodic solutions to a class of fourth order equations u(iv)(t) cu"(t) = f(t, u(t)); t is an element of [0, T], where f( t; u) is continuous, T-periodic in t and satisfies a superlinearity assumption when \u\ --> infinity. For every n is an element of N, we prove the existence of a T{periodic solution having exactly 2n zeroes in (0, T].
引用
收藏
页码:3283 / 3300
页数:18
相关论文
共 21 条
[1]  
Afuwape A.U., EXISTENCE THEOREM PE
[2]   INFINITELY MANY RADIAL SOLUTIONS OF A SEMILINEAR ELLIPTIC PROBLEM ON R(N) [J].
BARTSCH, T ;
WILLEM, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (03) :261-276
[3]  
BONHEURE D, IN PRESS CALCULUS VA
[4]   Existence and numerical approximations of periodic solutions of semilinear fourth-order differential equations [J].
Chaparova, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 273 (01) :121-136
[5]   Radial solutions of superlinear equations on RN -: Part II:: The forced case [J].
Conti, M ;
Terracini, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 153 (04) :317-339
[6]   Radial solutions of superlinear equations on RN -: Part I:: A global variational approach [J].
Conti, M ;
Merizzi, L ;
Terracini, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 153 (04) :291-316
[7]  
Conti M., 2002, ADV DIFFER EQUS, V7, P297
[8]  
Garcia FL, 2000, DYN CONTIN DISCRET I, V7, P239
[9]  
HABETS P, 2001, EQ 10 PRAG
[10]   LARGE-AMPLITUDE PERIODIC OSCILLATIONS IN SUSPENSION BRIDGES - SOME NEW CONNECTIONS WITH NONLINEAR-ANALYSIS [J].
LAZER, AC ;
MCKENNA, PJ .
SIAM REVIEW, 1990, 32 (04) :537-578