Insight and inference for DVARS

被引:58
作者
Afyouni, Soroosh [1 ,2 ,3 ]
Nichols, Thomas E. [1 ,4 ,5 ]
机构
[1] Univ Oxford, Nuffield Dept Populat Hlth, Li Ka Shing Ctr Hlth Informat & Discovery, Oxford Big Data Inst, Oxford OX3 7LF, England
[2] Univ Warwick, Inst Adv Studies, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, WMG, Inst Digital Healthcare, Coventry CV4 7AL, W Midlands, England
[4] Univ Oxford, Nuffield Dept Clin Neurosci, FMRIB, Wellcome Ctr Integrat Neuroimaging, Oxford OX3 7LF, England
[5] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
关键词
DVARS; Mean square of successive differences; Autocorrelation; Sum of squares decomposition; Time series; fMRI; Resting-state; ORGANIZATION; VARIABILITY; STATISTICS;
D O I
10.1016/j.neuroimage.2017.12.098
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Estimates of functional connectivity using resting state functional Magnetic Resonance Imaging (rs-fMRI) are acutely sensitive to artifacts and large scale nuisance variation. As a result much effort is dedicated to preprocessing rs-fMRI data and using diagnostic measures to identify bad scans. One such diagnostic measure is DVARS, the spatial root mean square of the data after temporal differencing. A limitation of DVARS however is the lack of concrete interpretation of the absolute values of DVARS, and finding a threshold to distinguish bad scans from good. In this work we describe a sum of squares decomposition of the entire 4D dataset that shows DVARS to be just one of three sources of variation we refer to as D-var (closely linked to DVARS), S-var and E-var. D-var and S-var partition the sum of squares at adjacent time points, while E-var accounts for edge effects; each can be used to make spatial and temporal summary diagnostic measures. Extending the partitioning to global (and non-global) signal leads to a rs-fMRI DSE table, which decomposes the total and global variability into fast (Dvar), slow (S-var) and edge (E-var) components. We find expected values for each component under nominal models, showing how D-var (and thus DVARS) scales with overall variability and is diminished by temporal autocorrelation. Finally we propose a null sampling distribution for DVARS-squared and robust methods to estimate this null model, allowing computation of DVARS p-values. We propose that these diagnostic time series, images, p-values and DSE table will provide a succinct summary of the quality of a rs-fMRI dataset that will support comparisons of datasets over preprocessing steps and between subjects.
引用
收藏
页码:291 / 312
页数:22
相关论文
共 28 条
  • [1] STATISTICS OF ATOMIC FREQUENCY STANDARDS
    ALLAN, DW
    [J]. PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1966, 54 (02): : 221 - &
  • [2] Filter properties of root mean square successive difference (RMSSD) for heart rate
    Berntson, GG
    Lozano, DL
    Chen, YJ
    [J]. PSYCHOPHYSIOLOGY, 2005, 42 (02) : 246 - 252
  • [3] Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project
    Burgess, Gregory C.
    Kandala, Sridhar
    Nolan, Dan
    Laumann, Timothy O.
    Power, Jonathan D.
    Adeyemo, Babatunde
    Harms, Michael P.
    Petersen, Steven E.
    Barch, Deanna M.
    [J]. BRAIN CONNECTIVITY, 2016, 6 (09) : 669 - 680
  • [4] Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity
    Ciric, Rastko
    Wolf, Daniel H.
    Power, Jonathan D.
    Roalf, David R.
    Baum, Graham L.
    Ruparel, Kosha
    Shinohara, Russell T.
    Elliott, Mark A.
    Eickhoff, Simon B.
    Davatzikos, Christos
    Gur, Ruben C.
    Gur, Raquel E.
    Bassett, Danielle S.
    Satterthwaite, Theodore D.
    [J]. NEUROIMAGE, 2017, 154 : 174 - 187
  • [5] APPLICATION OF LEAST SQUARES REGRESSION TO RELATIONSHIPS CONTAINING AUTOCORRELATED ERROR TERMS
    COCHRANE, D
    ORCUTT, GH
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1949, 44 (245) : 32 - 61
  • [6] Advances and pitfalls in the analysis and interpretation of resting-state FMRI data
    Cole, David M.
    Smith, Stephen M.
    Beckmann, Christian F.
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2010, 4
  • [7] Craddock R., 2013, FRONTIERS IN NEUROIN
  • [8] The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
    Di Martino, A.
    Yan, C-G
    Li, Q.
    Denio, E.
    Castellanos, F. X.
    Alaerts, K.
    Anderson, J. S.
    Assaf, M.
    Bookheimer, S. Y.
    Dapretto, M.
    Deen, B.
    Delmonte, S.
    Dinstein, I.
    Ertl-Wagner, B.
    Fair, D. A.
    Gallagher, L.
    Kennedy, D. P.
    Keown, C. L.
    Keysers, C.
    Lainhart, J. E.
    Lord, C.
    Luna, B.
    Menon, V.
    Minshew, N. J.
    Monk, C. S.
    Mueller, S.
    Mueller, R. A.
    Nebel, M. B.
    Nigg, J. T.
    O'Hearn, K.
    Pelphrey, K. A.
    Peltier, S. J.
    Rudie, J. D.
    Sunaert, S.
    Thioux, M.
    Tyszka, J. M.
    Uddin, L. Q.
    Verhoeven, J. S.
    Wenderoth, N.
    Wiggins, J. L.
    Mostofsky, S. H.
    Milham, M. P.
    [J]. MOLECULAR PSYCHIATRY, 2014, 19 (06) : 659 - 667
  • [9] Statistics: a data science for the 21st century
    Diggle, Peter J.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2015, 178 (04) : 793 - 813
  • [10] Moment-to-moment brain signal variability: A next frontier in human brain mapping?
    Garrett, Douglas D.
    Samanez-Larkin, Gregory R.
    MacDonald, Stuart W. S.
    Lindenberger, Ulman
    McIntosh, Anthony R.
    Grady, Cheryl L.
    [J]. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2013, 37 (04) : 610 - 624