Insight and inference for DVARS

被引:67
作者
Afyouni, Soroosh [1 ,2 ,3 ]
Nichols, Thomas E. [1 ,4 ,5 ]
机构
[1] Univ Oxford, Nuffield Dept Populat Hlth, Li Ka Shing Ctr Hlth Informat & Discovery, Oxford Big Data Inst, Oxford OX3 7LF, England
[2] Univ Warwick, Inst Adv Studies, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, WMG, Inst Digital Healthcare, Coventry CV4 7AL, W Midlands, England
[4] Univ Oxford, Nuffield Dept Clin Neurosci, FMRIB, Wellcome Ctr Integrat Neuroimaging, Oxford OX3 7LF, England
[5] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
关键词
DVARS; Mean square of successive differences; Autocorrelation; Sum of squares decomposition; Time series; fMRI; Resting-state; ORGANIZATION; VARIABILITY; STATISTICS;
D O I
10.1016/j.neuroimage.2017.12.098
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Estimates of functional connectivity using resting state functional Magnetic Resonance Imaging (rs-fMRI) are acutely sensitive to artifacts and large scale nuisance variation. As a result much effort is dedicated to preprocessing rs-fMRI data and using diagnostic measures to identify bad scans. One such diagnostic measure is DVARS, the spatial root mean square of the data after temporal differencing. A limitation of DVARS however is the lack of concrete interpretation of the absolute values of DVARS, and finding a threshold to distinguish bad scans from good. In this work we describe a sum of squares decomposition of the entire 4D dataset that shows DVARS to be just one of three sources of variation we refer to as D-var (closely linked to DVARS), S-var and E-var. D-var and S-var partition the sum of squares at adjacent time points, while E-var accounts for edge effects; each can be used to make spatial and temporal summary diagnostic measures. Extending the partitioning to global (and non-global) signal leads to a rs-fMRI DSE table, which decomposes the total and global variability into fast (Dvar), slow (S-var) and edge (E-var) components. We find expected values for each component under nominal models, showing how D-var (and thus DVARS) scales with overall variability and is diminished by temporal autocorrelation. Finally we propose a null sampling distribution for DVARS-squared and robust methods to estimate this null model, allowing computation of DVARS p-values. We propose that these diagnostic time series, images, p-values and DSE table will provide a succinct summary of the quality of a rs-fMRI dataset that will support comparisons of datasets over preprocessing steps and between subjects.
引用
收藏
页码:291 / 312
页数:22
相关论文
共 28 条
[1]   STATISTICS OF ATOMIC FREQUENCY STANDARDS [J].
ALLAN, DW .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1966, 54 (02) :221-&
[2]   Filter properties of root mean square successive difference (RMSSD) for heart rate [J].
Berntson, GG ;
Lozano, DL ;
Chen, YJ .
PSYCHOPHYSIOLOGY, 2005, 42 (02) :246-252
[3]   Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project [J].
Burgess, Gregory C. ;
Kandala, Sridhar ;
Nolan, Dan ;
Laumann, Timothy O. ;
Power, Jonathan D. ;
Adeyemo, Babatunde ;
Harms, Michael P. ;
Petersen, Steven E. ;
Barch, Deanna M. .
BRAIN CONNECTIVITY, 2016, 6 (09) :669-680
[4]   Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity [J].
Ciric, Rastko ;
Wolf, Daniel H. ;
Power, Jonathan D. ;
Roalf, David R. ;
Baum, Graham L. ;
Ruparel, Kosha ;
Shinohara, Russell T. ;
Elliott, Mark A. ;
Eickhoff, Simon B. ;
Davatzikos, Christos ;
Gur, Ruben C. ;
Gur, Raquel E. ;
Bassett, Danielle S. ;
Satterthwaite, Theodore D. .
NEUROIMAGE, 2017, 154 :174-187
[5]   APPLICATION OF LEAST SQUARES REGRESSION TO RELATIONSHIPS CONTAINING AUTOCORRELATED ERROR TERMS [J].
COCHRANE, D ;
ORCUTT, GH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1949, 44 (245) :32-61
[6]   Advances and pitfalls in the analysis and interpretation of resting-state FMRI data [J].
Cole, David M. ;
Smith, Stephen M. ;
Beckmann, Christian F. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2010, 4
[7]  
Craddock R., 2013, FRONTIERS IN NEUROIN
[8]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[9]   Statistics: a data science for the 21st century [J].
Diggle, Peter J. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2015, 178 (04) :793-813
[10]   Moment-to-moment brain signal variability: A next frontier in human brain mapping? [J].
Garrett, Douglas D. ;
Samanez-Larkin, Gregory R. ;
MacDonald, Stuart W. S. ;
Lindenberger, Ulman ;
McIntosh, Anthony R. ;
Grady, Cheryl L. .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2013, 37 (04) :610-624