Accurate Directional Inference for Vector Parameters in Linear Exponential Families

被引:10
|
作者
Davison, A. C. [1 ]
Fraser, D. A. S. [2 ]
Reid, N. [2 ]
Sartori, N. [3 ]
机构
[1] Ecole Polytech Fed Lausanne, EPFL FSB MATHAA STAT, CH-1015 Lausanne, Switzerland
[2] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
[3] Univ Padua, Dipartimento Sci Stat, I-35121 Padua, Italy
基金
加拿大自然科学与工程研究理事会; 瑞士国家科学基金会;
关键词
Contingency table; Covariance selection; Exponential family model; Higher-order asymptotics; Likelihood ratio test; Logistic regression; APPROXIMATE CONDITIONAL INFERENCE; MAXIMUM-LIKELIHOOD; MODELS; TESTS;
D O I
10.1080/01621459.2013.839451
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider inference on a vector-valued parameter of interest in a linear exponential family, in the presence of a finite-dimensional nuisance parameter. Based on higher-order asymptotic theory for likelihood, we propose a directional test whose p-value is computed using one-dimensional integration. The work simplifies and develops earlier research on directional tests for continuous models and on higher-order inference for discrete models, and the examples include contingency tables and logistic regression. Examples and simulations illustrate the high accuracy of the method, which we compare with the usual likelihood ratio test and with an adjusted version due to Skovgaard. In high-dimensional settings, such as covariance selection, the approach works essentially perfectly, whereas its competitors can fail catastrophically.
引用
收藏
页码:302 / 314
页数:13
相关论文
共 17 条
  • [1] Accurate directional inference for vector parameters
    Fraser, D. A. S.
    Reid, N.
    Sartori, N.
    BIOMETRIKA, 2016, 103 (03) : 625 - 639
  • [2] Posterior inference in curved exponential families under increasing dimensions
    Belloni, Alexandre
    Chernozhukov, Victor
    ECONOMETRICS JOURNAL, 2014, 17 (02) : S75 - S100
  • [3] Robust and accurate inference for generalized linear models
    Lo, Serigne N.
    Ronchetti, Elvezio
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (09) : 2126 - 2136
  • [4] MORE ACCURATE CONFIDENCE-INTERVALS IN EXPONENTIAL-FAMILIES
    DICICCIO, T
    EFRON, B
    BIOMETRIKA, 1992, 79 (02) : 231 - 245
  • [5] Inference of directional selection and mutation parameters assuming equilibrium
    Vogl, Claus
    Bergman, Juraj
    THEORETICAL POPULATION BIOLOGY, 2015, 106 : 71 - 82
  • [6] Score Matched Neural Exponential Families for Likelihood-Free Inference
    Pacchiardi, Lorenzo
    Dutta, Ritabrata
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23 : 1 - 71
  • [7] Inference on co-integration parameters in heteroskedastic vector autoregressions
    Boswijk, H. Peter
    Cavaliere, Giuseppe
    Rahbek, Anders
    Taylor, A. M. Robert
    JOURNAL OF ECONOMETRICS, 2016, 192 (01) : 64 - 85
  • [8] Computationally efficient likelihood inference in exponential families when the maximum likelihood estimator does not exist
    Eck, Daniel J.
    Geyer, Charles J.
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 2105 - 2156
  • [9] Bayesian inference of biochemical kinetic parameters using the linear noise approximation
    Komorowski, Michal
    Finkenstadt, Barbel
    Harper, Claire V.
    Rand, David A.
    BMC BIOINFORMATICS, 2009, 10
  • [10] Likelihood ratio tests in curved exponential families with nuisance parameters present only under the alternative
    Ritz, C
    Skovgaard, IM
    BIOMETRIKA, 2005, 92 (03) : 507 - 517