Effect of organic, inorganic and slow-release urea fertilisers on CH4 and N2O emissions from rice paddy fields

被引:33
|
作者
Mai Van Trinh [1 ]
Tesfai, Mehreteab [2 ]
Borrell, Andrew [3 ]
Nagothu, Udaya Sekhar [2 ]
Thi Phuong Loan Bui [1 ]
Vu Duong Quynh [1 ]
Le Quoc Thanh [1 ]
机构
[1] VAAS, Hanoi, Vietnam
[2] Norwegian Inst Bioecon Res, A Dahls Vei 20, N-1430 As, Norway
[3] Univ Queensland, QAAFI, Hermitage Res Facil, Warwick, Qld 4370, Australia
关键词
Biochar; Compost; Slow-release urea; Greenhouse gas emissions; Methane; Nitrous oxide; Rice; Vietnam; NITROUS-OXIDE EMISSIONS; METHANE EMISSION; BIOCHAR; SOIL; EFFICIENCY; PYROLYSIS; MATTER; MAIZE; FLUX;
D O I
10.1007/s10333-016-0551-1
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Vietnam is one of the world's top two rice exporting countries. However, rice cultivation is the primary source of agriculture's greenhouse gas (GHG) emissions in Vietnam. In particular, strategies are required to reduce GHG emissions associated with the application of organic and inorganic fertilisers. The objective of this study was to assess the effects of various combinations of biochar (BIOC), compost (COMP) and slow-release urea (SRU) on methane (CH4) and nitrous oxide (N2O) emissions. In total, 1170 gas samples were collected from closed gas chambers in rice paddies at Thinh Long commune and Rang Dong farm in northern Vietnam between June and October 2014. The gas samples were analysed for CH4-C and N2O-N fluxes using gas chromatography. The application of BIOC alone resulted in the lowest CH4 emissions (4.8-59 mg C m(-2) h(-1)) and lowest N2O emissions (0.15-0.26 A mu g N m(-2) h(-1)). The combined application of nitrogen-phosphorus-potassium (NPK) + COMP emitted the highest CH4 (14-72 mg C m(-2) h(-1)), while A 1/2 NPK + BIOC emitted the highest N2O (1.03 A mu g N m(-2) h(-1) in the TL commune), but it was the second lowest (0.495 A mu g N m(-2) h(-1)) in the RD farm. Green urea and orange urea reduced N2O emissions significantly (p < 0.05) compared to white urea, but no significant differences were observed with respect to CH4 emissions. SRU fertilisers and BIOC alone measured the lowest greenhouse gas intensity, i.e. < 2.5 and 3 kg CO2 eq. kg(-1) rice grain, respectively. Based on these results, application of fertilisers in the form of BIOC and/or orange or green urea could be a viable option to reduce both CH4 and N2O emissions from rice paddy soils.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 50 条
  • [21] Effect of biochar on CH4 and N2O emission from soils vegetated with paddy
    Ankit Singla
    Kazuyuki Inubushi
    Paddy and Water Environment, 2014, 12 : 239 - 243
  • [22] Effects of Nitrogen Fertilizer Management on CH4 and N2O Emissions in Paddy Field
    Zheng M.-Q.
    Liu J.
    Jiang P.-K.
    Wu J.-S.
    Li Y.-F.
    Li S.-H.
    Huanjing Kexue/Environmental Science, 2022, 43 (04): : 2171 - 2181
  • [23] Study on CH4 and N2O emissions from water-saving irrigation in Phaeozem paddy fields in cold areas
    Wang, F. Q.
    Guo, W.
    Zhu, S. J.
    Gong, X. L.
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2016, 37 (05): : 1077 - 1085
  • [24] Effects of elevated CO2 concentration on CH4 and N2O emissions from paddy fields: A meta-analysis
    Haiyang YU
    Tianyu WANG
    Qiong HUANG
    Kaifu SONG
    Guangbin ZHANG
    Jing MA
    Hua XU
    ScienceChina(EarthSciences), 2022, 65 (01) : 96 - 106
  • [25] Effects of elevated CO2 concentration on CH4 and N2O emissions from paddy fields: A meta-analysis
    Yu, Haiyang
    Wang, Tianyu
    Huang, Qiong
    Song, Kaifu
    Zhang, Guangbin
    Ma, Jing
    Xu, Hua
    SCIENCE CHINA-EARTH SCIENCES, 2022, 65 (01) : 96 - 106
  • [26] Effects of elevated CO2 concentration on CH4 and N2O emissions from paddy fields: A meta-analysis
    Haiyang Yu
    Tianyu Wang
    Qiong Huang
    Kaifu Song
    Guangbin Zhang
    Jing Ma
    Hua Xu
    Science China Earth Sciences, 2022, 65 : 96 - 106
  • [27] Factors Related with CH4 and N2O Emissions from a Paddy Field: Clues for Management implications
    Wang, Chun
    Lai, Derrick Y. F.
    Sardans, Jordi
    Wang, Weiqi
    Zeng, Congsheng
    Penuelas, Josep
    PLOS ONE, 2017, 12 (01):
  • [28] The effectiveness of methanotrophic bacteria and Ochrobactrum anthropi to reduce CH4 and N2O emissions and to promote paddy growth in lowland paddy fields
    Sukmawati, Dalia
    Rusmana, Iman
    Mubarik, Nisa Rachmania
    MALAYSIAN JOURNAL OF MICROBIOLOGY, 2016, 12 (01) : 50 - 55
  • [29] Effects of ryegrass incorporation on CH4 and N2O emission from double rice paddy soil
    Zhu B.
    Yi L.
    Hu Y.
    Zeng Z.
    Tang H.
    Xiao X.
    Yang G.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2011, 27 (12): : 241 - 245
  • [30] Energy efficiency and emissions of CO2, CH4, and N2O in organic and conventional rice production
    Guareschi, Roni Fernandes
    Martins, Marcio dos Reis
    Urquiaga, Segundo
    Rodrigues Alves, Bruno Jose
    Boddey, Robert Michael
    Sarkis, Leonardo Fernandes
    SEMINA-CIENCIAS AGRARIAS, 2020, 41 (03): : 797 - 810