Effect of organic, inorganic and slow-release urea fertilisers on CH4 and N2O emissions from rice paddy fields

被引:33
|
作者
Mai Van Trinh [1 ]
Tesfai, Mehreteab [2 ]
Borrell, Andrew [3 ]
Nagothu, Udaya Sekhar [2 ]
Thi Phuong Loan Bui [1 ]
Vu Duong Quynh [1 ]
Le Quoc Thanh [1 ]
机构
[1] VAAS, Hanoi, Vietnam
[2] Norwegian Inst Bioecon Res, A Dahls Vei 20, N-1430 As, Norway
[3] Univ Queensland, QAAFI, Hermitage Res Facil, Warwick, Qld 4370, Australia
关键词
Biochar; Compost; Slow-release urea; Greenhouse gas emissions; Methane; Nitrous oxide; Rice; Vietnam; NITROUS-OXIDE EMISSIONS; METHANE EMISSION; BIOCHAR; SOIL; EFFICIENCY; PYROLYSIS; MATTER; MAIZE; FLUX;
D O I
10.1007/s10333-016-0551-1
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Vietnam is one of the world's top two rice exporting countries. However, rice cultivation is the primary source of agriculture's greenhouse gas (GHG) emissions in Vietnam. In particular, strategies are required to reduce GHG emissions associated with the application of organic and inorganic fertilisers. The objective of this study was to assess the effects of various combinations of biochar (BIOC), compost (COMP) and slow-release urea (SRU) on methane (CH4) and nitrous oxide (N2O) emissions. In total, 1170 gas samples were collected from closed gas chambers in rice paddies at Thinh Long commune and Rang Dong farm in northern Vietnam between June and October 2014. The gas samples were analysed for CH4-C and N2O-N fluxes using gas chromatography. The application of BIOC alone resulted in the lowest CH4 emissions (4.8-59 mg C m(-2) h(-1)) and lowest N2O emissions (0.15-0.26 A mu g N m(-2) h(-1)). The combined application of nitrogen-phosphorus-potassium (NPK) + COMP emitted the highest CH4 (14-72 mg C m(-2) h(-1)), while A 1/2 NPK + BIOC emitted the highest N2O (1.03 A mu g N m(-2) h(-1) in the TL commune), but it was the second lowest (0.495 A mu g N m(-2) h(-1)) in the RD farm. Green urea and orange urea reduced N2O emissions significantly (p < 0.05) compared to white urea, but no significant differences were observed with respect to CH4 emissions. SRU fertilisers and BIOC alone measured the lowest greenhouse gas intensity, i.e. < 2.5 and 3 kg CO2 eq. kg(-1) rice grain, respectively. Based on these results, application of fertilisers in the form of BIOC and/or orange or green urea could be a viable option to reduce both CH4 and N2O emissions from rice paddy soils.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 50 条
  • [1] Effect of organic, inorganic and slow-release urea fertilisers on CH4 and N2O emissions from rice paddy fields
    Mai Van Trinh
    Mehreteab Tesfai
    Andrew Borrell
    Udaya Sekhar Nagothu
    Thi Phuong Loan Bui
    Vu Duong Quynh
    Le Quoc Thanh
    Paddy and Water Environment, 2017, 15 : 317 - 330
  • [2] The effect of floating vegetation on CH4 and N2O emissions from subtropical paddy fields in China
    Wang, Chun
    Li, Shouchun
    Lai, Derrick Y. F.
    Wang, Weiqi
    Ma, Yongyue
    PADDY AND WATER ENVIRONMENT, 2015, 13 (04) : 425 - 431
  • [3] Azolla cover significantly decreased CH4 but not N2O emissions from flooding rice paddy to atmosphere
    Kimani, Samuel Munyaka
    Cheng, Weiguo
    Kanno, Takamori
    Nguyen-Sy, Toan
    Abe, Ryoko
    Oo, Aung Zaw
    Tawaraya, Keitaro
    Sudo, Shigeto
    SOIL SCIENCE AND PLANT NUTRITION, 2018, 64 (01) : 68 - 76
  • [4] Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar
    Zhou, Beibei
    Feng, Yanfang
    Wang, Yueman
    Yang, Linzhang
    Xue, Lihong
    Xing, Baoshan
    CHEMOSPHERE, 2018, 204 : 474 - 482
  • [5] The effect of organic and mineral nitrogen fertilisers on emissions of NO, N2O and CH4 from cut grassland
    Rees, R
    Jones, S
    Thorman, RE
    McTaggart, I
    Ball, B
    Skiba, U
    CONTROLLING NITROGEN FLOWS AND LOSSES, 2004, : 268 - 276
  • [6] Regulating CH4, N2O, and NO emissions from an alkaline paddy field under rice-wheat rotation with controlled release N fertilizer
    Lan, Ting
    Zhang, Heng
    Han, Yong
    Deng, Ouping
    Tang, Xiaoyan
    Luo, Ling
    Zeng, Jian
    Chen, Guangdeng
    Wang, Changquan
    Gao, Xuesong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (14) : 18246 - 18259
  • [7] The effect of substituting inorganic fertilizer with manure on soil N2O and CH4 emissions and crop yields: A global meta-analysis
    Meng, Xiaoyi
    Liu, Shurong
    Zou, Junliang
    Osborne, Bruce
    FIELD CROPS RESEARCH, 2025, 326
  • [8] Incorporation of rice straw mitigates CH4 and N2O emissions in water saving paddy fields of Central Vietnam
    Thi Thai Hoa Hoang
    Dinh Thuc Do
    Thi Thu Giang Tran
    Tan Duc Ho
    Rehman, Hafeez Ur
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2019, 65 (01) : 113 - 124
  • [9] Effects of rice straw biochar on CH4 and N2O emissions in alternating wetting and drying rice fields
    Liu C.
    Chi D.
    Zhang F.
    Han H.
    Yi B.
    Wang Z.
    Meng J.
    Chen T.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (14): : 232 - 242
  • [10] Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China
    Hou, Huijing
    Peng, Shizhang
    Xu, Junzeng
    Yang, Shihong
    Mao, Zhi
    CHEMOSPHERE, 2012, 89 (07) : 884 - 892