Meromorphic harmonic univalent functions related with generalized (p,q)-post quantum calculus operators

被引:2
作者
Li, Shuhai [1 ]
Ma, Lina [1 ]
Tang, Huo [1 ]
机构
[1] Chifeng Univ, Sch Math & Comp Sci, Chifeng 024000, Inner Mongolia, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 01期
关键词
meromorphic harmonic univalent function; subordination; convolution; generalized; (p; q)-post quantum calculus operator;
D O I
10.3934/math.2021015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce certain subclasses of meromorphic harmonic univalent functions, which are defined by using generalized (p, q)-post quantum calculus operators as well as subordination relationship. Sufficient coefficient conditions, extreme points, distortion bounds and convolution properties for functions belonging to the subclasses are obtained.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 11 条
  • [1] Harmonic univalent functions defined by post quantum calculus operators
    Ahuja, Om P.
    Cetinkaya, Asena
    Ravichandran, V
    [J]. ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2019, 11 (01) : 5 - 17
  • [2] Aldweby M., 2015, J CLASSICAL ANAL, V6, P153, DOI DOI 10.7153/JCA-06-12
  • [3] Bostanci H., 2008, INT J MATH SCI, V2, P471
  • [4] ON THE REPRESENTATIONS OF GLP,Q(2), GLP,Q(1/1) AND NONCOMMUTATIVE SPACES
    CHAKRABARTI, R
    JAGANNATHAN, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (24): : 5683 - 5701
  • [5] CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
  • [6] Duren P., 2004, HARMONIC MAPPINGS PL
  • [7] Duren P. L., 1983, UNIVALENT FUNCTIONS
  • [8] On Janowski harmonic functions
    Dziok, Jacek
    [J]. JOURNAL OF APPLIED ANALYSIS, 2015, 21 (02) : 99 - 107
  • [9] El-Ashwah R. M., 2015, THEORY APPL MATH COM, V5, P126
  • [10] Jahangiri Jay, 2000, Bulletin of the Korean Mathematical Society, V37, P291