MXene Ti3C2Tx for phase change composite with superior photothermal storage capability

被引:273
作者
Fan, Xiaoqiao [1 ]
Liu, Lu [1 ]
Jin, Xin [2 ]
Wang, Wentao [3 ]
Zhang, Shufen [1 ]
Tang, Bingtao [1 ,2 ]
机构
[1] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] Qingdao Univ Sci & Technol, Ecochem Engn Cooperat Innovat Ctr Shandong, Qingdao 266042, Shandong, Peoples R China
[3] Zhejiang Sci Tech Univ, Minist Educ, Key Lab Adv Text Mat & Mfg Technol, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
THERMAL-ENERGY STORAGE; GRAPHENE AEROGELS; CONVERSION; LIGHT; CONDUCTIVITY; NANOSHEETS; OXIDE;
D O I
10.1039/c9ta03962g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The latent heat storage of PCMs has gained increasing attention in the solar energy application field due to their high thermal energy storage density. However, the lack of energy conversion ability of the organic PCMs results in the low utilization efficiency of solar energy. Herein, we report a novel PEG/Ti3C2Tx layered composite PCM with superior photothermal storage capability, which consists of stacked Ti3C2Tx nanosheets and PEG filled within the spaces between the flakes. The resulting composites exhibited a strong absorption capacity for electromagnetic waves at the UV-Vis-NIR region. Notably, there are two enhanced absorption bands at the visible and near-infrared regions due to the localized surface plasmon resonance (LSPR) effect of the Ti3C2Tx nanosheets, which endows the composite PCM with excellent photo-to-thermal storage efficiencies (up to 94.5%) under actual solar light irradiation. In addition, the composite PCM also possesses a high energy storage density and form-stable property before and after the phase transition. These results indicate that the synthesized composite presents superior comprehensive properties suitable for solar energy storage applications.
引用
收藏
页码:14319 / 14327
页数:9
相关论文
共 39 条
  • [1] 2D metal carbides and nitrides (MXenes) for energy storage
    Anasori, Babak
    Lukatskaya, Maria R.
    Gogotsi, Yury
    [J]. NATURE REVIEWS MATERIALS, 2017, 2 (02):
  • [2] ANDERSON WT, 1951, J OPT SOC AM, V41, P385
  • [3] Materials used as PCM in thermal energy storage in buildings: A review
    Cabeza, L. F.
    Castell, A.
    Barreneche, C.
    de Gracia, A.
    Fernandez, A. I.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (03) : 1675 - 1695
  • [4] Electro- and Photodriven Phase Change Composites Based on Wax-Infiltrated Carbon Nanotube Sponges
    Chen, Liangjie
    Zou, Ruqiang
    Xia, Wei
    Liu, Zhenpu
    Shang, Yuanyuan
    Zhu, Jinlong
    Wang, Yingxia
    Lin, Jianhua
    Xia, Dingguo
    Cao, Anyuan
    [J]. ACS NANO, 2012, 6 (12) : 10884 - 10892
  • [5] Electro/photo to heat conversion system based on polyurethane embedded graphite foam
    Chen, Renjie
    Yao, Ruimin
    Xia, Wei
    Zou, Ruqiang
    [J]. APPLIED ENERGY, 2015, 152 : 183 - 188
  • [6] Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes
    Dong, Yongchang
    Chertopalov, Sergii
    Maleski, Kathleen
    Anasori, Babak
    Hu, Longyu
    Bhattacharya, Sriparna
    Rao, Apparao M.
    Gogotsi, Yury
    Mochalin, Vadym N.
    Podila, Ramakrishna
    [J]. ADVANCED MATERIALS, 2018, 30 (10)
  • [7] A review on phase change energy storage: materials and applications
    Farid, MM
    Khudhair, AM
    Razack, SAK
    Al-Hallaj, S
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (9-10) : 1597 - 1615
  • [8] Crystallization behavior of nylon 6 nanocomposites
    Fornes, TD
    Paul, DR
    [J]. POLYMER, 2003, 44 (14) : 3945 - 3961
  • [9] Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance
    Ghidiu, Michael
    Lukatskaya, Maria R.
    Zhao, Meng-Qiang
    Gogotsi, Yury
    Barsoum, Michel W.
    [J]. NATURE, 2014, 516 (7529) : 78 - U171
  • [10] Anomalous Thermal Conduction Characteristics of Phase Change Composites with Single-Walled Carbon Nanotube Inclusions
    Harish, Sivasankaran
    Ishikawa, Kei
    Chiashi, Shohei
    Shiomi, Junichiro
    Maruyama, Shigeo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (29) : 15409 - 15413