Experimental Identification of Stress Concentrations in Piezoresistive Nanocomposites via Electrical Impedance Tomography

被引:6
作者
Hassan, H. [1 ]
Tallman, T. N. [1 ]
机构
[1] Purdue Univ, Sch Aeronaut & Astronaut, W Stadium Ave, W Lafayette, IN 47907 USA
来源
SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2019 | 2019年 / 10970卷
关键词
piezoresistivity; nanocomposites; structural health monitoring; failure prediction; electrical impedance tomography; DAMAGE DETECTION; SENSING SKIN; CARBON; COMPOSITES; ELEMENTS;
D O I
10.1117/12.2513468
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Piezoresistive nanocomposites hold incredible potential for structural health monitoring (SHM). The electrical conductivity of these materials is influenced by strain, making them self-sensing. Electrical impedance tomography (EIT) is a low-cost, non-invasive method of imaging the internal conductivity distribution of a domain To date, EIT has most often been used to detect damage. However, localizing incipient damage for failure prediction may situationally be a more useful capability from a SHM perspective. Herein, we explore the potential of EIT to identify stress concentration-induced conductivity changes in piezoresistive nanocomposites. First, a nanocomposite specimen with a circular hole is manufactured. Next, displacements are applied in small increments and boundary voltage data is collected after each increment of displacement such that conductivity images can be produced as the stress concentration intensifies. These results demonstrate that the proposed approach allows for accurate spatial localization of stress concentrations in deformed nanocomposites via EIT-imaged conductivity changes and therefore has potential to enable greatly advanced failure prediction capabilities.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
Bowland C. C., 2017, SPIE SMART STRUCTURE
[2]   Mechanical Analysis of Carbon Nanofiber/Epoxy Resin Composites [J].
Chaos-Moran, R. ;
Salazar, A. ;
Urena, A. .
POLYMER COMPOSITES, 2011, 32 (10) :1640-1651
[3]   A Novel Methodology for Spatial Damage Detection and Imaging Using a Distributed Carbon Nanotube-Based Composite Sensor Combined with Electrical Impedance Tomography [J].
Dai, Hongbo ;
Gallo, Gerard J. ;
Schumacher, Thomas ;
Thostenson, Erik T. .
JOURNAL OF NONDESTRUCTIVE EVALUATION, 2016, 35 (02)
[4]   Mechanical ventilation guided by electrical impedance tomography in pediatric acute respiratory distress syndrome [J].
Dmytrowich, Jeffrey ;
Holt, Tanya ;
Schmid, Karen ;
Hansen, Gregory .
JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2018, 32 (03) :503-507
[5]   Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group [J].
Frerichs, Inez ;
Amato, Marcelo B. P. ;
van Kaam, Anton H. ;
Tingay, David G. ;
Zhao, Zhanqi ;
Grychtol, Bartlomiej ;
Bodenstein, Marc ;
Gagnon, Herve ;
Bohm, Stephan H. ;
Teschner, Eckhard ;
Stenqvist, Ola ;
Mauri, Tommaso ;
Torsani, Vinicius ;
Camporota, Luigi ;
Schibler, Andreas ;
Wolf, Gerhard K. ;
Gommers, Diederik ;
Leonhardt, Steffen ;
Adler, Andy .
THORAX, 2017, 72 (01) :83-93
[6]   Spatial damage detection in electrically anisotropic fiber-reinforced composites using carbon nanotube networks [J].
Gallo, Gerard J. ;
Thostenson, Erik T. .
COMPOSITE STRUCTURES, 2016, 141 :14-23
[7]   A new sensing skin for qualitative damage detection in concrete elements: Rapid difference imaging with electrical resistance tomography [J].
Hallaji, Milad ;
Pour-Ghaz, Mohammad .
NDT & E INTERNATIONAL, 2014, 68 :13-21
[8]   Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete [J].
Hallaji, Milad ;
Seppanen, Aku ;
Pour-Ghaz, Mohammad .
SMART MATERIALS AND STRUCTURES, 2014, 23 (08)
[9]  
Hassan H., 2018, SPIE SMART STRUCTURE
[10]  
Hassan H., 2018, J INTELLIGENT MAT SY