Hierarchical Tuning of the Performance of Electrochemical Carbon Dioxide Reduction Using Conductive Two-Dimensional Metallophthalocyanine Based Metal-Organic Frameworks

被引:185
作者
Meng, Zheng [1 ]
Luo, Jianmin [2 ]
Li, Weiyang [2 ]
Mirica, Katherine A. [1 ]
机构
[1] Dartmouth Coll, Dept Chem, Hanover, NH 03755 USA
[2] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
基金
美国国家科学基金会;
关键词
CO2; REDUCTION; ELECTROCATALYTIC REDUCTION; RETICULAR CHEMISTRY; EFFICIENT ELECTROCATALYST; MOLECULAR CATALYSIS; ACTIVE-SITES; ELECTROREDUCTION; NICKEL; GRAPHENE; CONVERSION;
D O I
10.1021/jacs.0c07041
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of reticular materials in the electrochemical reduction of carbon dioxide to value-added products has the potential to enable tunable control of the catalytic performance through the modulation of chemical and structural features of framework materials with atomic precision. However, the tunable functional performance of such systems is still largely hampered by their poor electrical conductivities. This work demonstrates the use of four systematic structural analogs of conductive two-dimensional (2D) metal-organic frameworks (MOFs) made of metallophthalocyanine (MPc) ligands linked by Cu nodes with electrical conductivities of 2.73 x 10(-3) to 1.04 x 10(-1) S cm(-1) for the electrochemical reduction of CO2 to CO. The catalytic performance of the MOFs, including the activity and selectivity, is found to be hierarchically governed by two important structural factors: the metal within the MPc (M = Co vs Ni) catalytic subunit and the identity of the heteroatomic cross-linkers between these subunits (X = O vs NH). The activity and selectivity are dominated by the choice of metal within MPcs and are further modulated by the heteroatomic linkages. Among these MOFs, CoPc-Cu-O exhibited the highest selectivity toward CO product (Faradaic efficiency FECO = 85%) with high current densities up to -17.3 mA cm-2 as a composite with carbon black at 1:1 mass ratio) at a low overpotential of -0.63 V. Without using any conductive additives, the use of CoPc-Cu-O directly as an electrode material was able to achieve a current density of -9.5 mA cm(-2) with a FECO of 79%. Mechanistic studies by comparison tests with metal-free phthalocyanine MOF analogs supported the dominant catalytic role of the central metal of the phthalocyanine over Cu nodes. Density-functional theory calculations further suggested that, compared with the NiPc-based and NH-linked analogs, CoPc-based and O-linked MOFs have lower activation energies in the formation of carboxyl intermediate, in line with their higher activities and selectivity. The results of this study indicate that the use of 2D MPc-based conductive framework materials holds great promise for achieving efficient CO2 reduction through strategic ligand engineering with multiple levels of tunability.
引用
收藏
页码:21656 / 21669
页数:14
相关论文
共 119 条
[1]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[2]   Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2 [J].
Aresta, Michele ;
Dibenedetto, Angela ;
Angelini, Antonella .
CHEMICAL REVIEWS, 2014, 114 (03) :1709-1742
[3]   Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid [J].
Asadi, Mohammad ;
Kim, Kibum ;
Liu, Cong ;
Addepalli, Aditya Venkata ;
Abbasi, Pedram ;
Yasaei, Poya ;
Phillips, Patrick ;
Behranginia, Amirhossein ;
Cerrato, Jose M. ;
Haasch, Richard ;
Zapol, Peter ;
Kumar, Bijandra ;
Klie, Robert F. ;
Abiade, Jeremiah ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
SCIENCE, 2016, 353 (6298) :467-470
[4]   Robust carbon dioxide reduction on molybdenum disulphide edges [J].
Asadi, Mohammad ;
Kumar, Bijandra ;
Behranginia, Amirhossein ;
Rosen, Brian A. ;
Baskin, Artem ;
Repnin, Nikita ;
Pisasale, Davide ;
Phillips, Patrick ;
Zhu, Wei ;
Haasch, Richard ;
Klie, Robert F. ;
Kral, Petr ;
Abiade, Jeremiah ;
Salehi-Khojin, Amin .
NATURE COMMUNICATIONS, 2014, 5
[5]   Molecular Engineering of Multifunctional Metallophthalocyanine-Containing Framework Materials [J].
Aykanat, Aylin ;
Meng, Zheng ;
Benedetto, Georganna ;
Mirica, Katherine A. .
CHEMISTRY OF MATERIALS, 2020, 32 (13) :5372-5409
[6]   Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO2-to-CO Electrochemical Conversion [J].
Azcarate, Iban ;
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (51) :16639-16644
[7]   ELECTROCHEMICAL REDUCTION OF CARBON-DIOXIDE ON CONDUCTIVE METALLIC OXIDES [J].
BANDI, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (07) :2157-2160
[8]   Experimental and theoretical investigation of vibrational spectra of copper phthalocyanine: polarized single-crystal Raman spectra, isotope effect and DFT calculations [J].
Basova, Tamara V. ;
Kiselev, Vitaly G. ;
Schuster, Britt-Elfriede ;
Peisert, Heiko ;
Chasse, Thomas .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (12) :2080-2087
[9]   ELECTROCATALYTIC REDUCTION OF CO2 BY NI CYCLAM2+ IN WATER - STUDY OF THE FACTORS AFFECTING THE EFFICIENCY AND THE SELECTIVITY OF THE PROCESS [J].
BELEY, M ;
COLLIN, JP ;
RUPPERT, R ;
SAUVAGE, JP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108 (24) :7461-7467
[10]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99