Boundary conformal field theories and loop models

被引:0
作者
Rajabpour, M. A. [1 ,2 ,3 ]
机构
[1] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy
[2] Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy
[3] Inst Studies Theoret Phys & Math, Tehran 193955531, Iran
关键词
8-VERTEX SOS MODEL; LATTICE MODELS; CRITICAL-BEHAVIOR; DYNKIN DIAGRAMS; ISING-MODEL; O(N) MODEL; SLE; ADE; CLASSIFICATION; CONSTRUCTION;
D O I
10.1088/1751-8113/42/34/345004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a systematic method to extract conformal loop models for rational conformal field theories (CFT). The method is based on defining an ADE model for boundary primary operators by using the fusion matrices of these operators as adjacency matrices. These loop models respect the conformal boundary conditions. We discuss the loop models that can be extracted by this method for minimal CFTs and then we give dilute O(n) loop models on the square lattice as examples for these loop models. We also give some proposals for WZW SU(2) models.
引用
收藏
页数:16
相关论文
共 38 条
  • [1] Boundary critical phenomena in the three-state Potts model
    Affleck, I
    Oshikawa, M
    Saleur, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (28): : 5827 - 5842
  • [2] 8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES
    ANDREWS, GE
    BAXTER, RJ
    FORRESTER, PJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) : 193 - 266
  • [3] SLEκ growth processes and conformal field theories
    Bauer, M
    Bernard, D
    [J]. PHYSICS LETTERS B, 2002, 543 (1-2) : 135 - 138
  • [4] On the classification of bulk and boundary conformal field theories
    Behrend, RE
    Pearce, PA
    Petkova, VB
    Zuber, JB
    [J]. PHYSICS LETTERS B, 1998, 444 (1-2) : 163 - 166
  • [5] Boundary conditions in rational conformal field theories (vol B570, pg 525, 2000)
    Behrend, RE
    Pearce, PA
    Petkova, VB
    Zuber, JB
    [J]. NUCLEAR PHYSICS B, 2000, 579 (03) : 707 - 773
  • [6] Stochastic Loewner evolution for conformal field theories with Lie group symmetries
    Bettelheim, E
    Gruzberg, IA
    Ludwig, AWW
    Wiegmann, P
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (25)
  • [7] CRITICAL-BEHAVIOR AND CONFORMAL ANOMALY OF THE O(N) MODEL ON THE SQUARE LATTICE
    BLOTE, HWJ
    NIENHUIS, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09): : 1415 - 1438
  • [8] THE A-D-E CLASSIFICATION OF MINIMAL AND A1(1) CONFORMAL INVARIANT THEORIES
    CAPPELLI, A
    ITZYKSON, C
    ZUBER, JB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (01) : 1 - 26
  • [9] BOUNDARY-CONDITIONS, FUSION RULES AND THE VERLINDE FORMULA
    CARDY, JL
    [J]. NUCLEAR PHYSICS B, 1989, 324 (03) : 581 - 596
  • [10] ADE and SLE
    Cardy, John
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (07) : 1427 - 1438