Probing the Chemical Stability of Aniline under High Pressure

被引:16
|
作者
Nobrega, Marcelo M. [1 ,2 ]
Temperini, Marcia L. A. [1 ]
Bini, Roberto [2 ,3 ,4 ]
机构
[1] Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, CP 26077, BR-05513970 Sao Paulo, SP, Brazil
[2] European Lab Nonlinear Spect, LENS, Via Nello Carrara 1, I-50019 Florence, Italy
[3] Univ Firenze, Dipartirnento Chim Ugo Schiff, Via Lastruccia 3, I-50019 Florence, Italy
[4] Natl Res Council Italy, Inst Chem OrganoMetall Cpds, ICCOM CNR, Via Madonna Piano 10, I-50019 Florence, Italy
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2017年 / 121卷 / 13期
基金
巴西圣保罗研究基金会;
关键词
EMERALDINE SALT; S-TRIAZINE; INFRARED-SPECTROSCOPY; INDUCED REACTIVITY; POLYANILINE; BENZENE; RAMAN; FORM; POLYMERIZATION; AMORPHIZATION;
D O I
10.1021/acs.jpcc.6b12924
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aniline is an important molecule from a fundamental point of view because it is the prototype of aromatic amines, but it is also important for industry due to its highly exploited conducting polymer in the materials engineering field. High pressure and temperature studies on the chemical stability of aniline are mandatory to figure out how to trigger aniline's reactivity in reduced space for a possible practical exploitation of high pressure in the synthesis of novel materials, such as highly ordered polyaniline. Synchrotron X-ray diffraction (XRD) experiments allowed the aniline's equation of state to be expanded up to 16.3 GPa. UV-vis absorption-and Fourier transformed IR (FTIR) experiments at different pressure and temperature showed an anomalous chemical stability of aniline with respect to other aromatic systems, likely due to the hydrogen bonds arrangement. Reactivity has been laser-induced showing, for short irradiation, the formation of a limited amount of saturated chain-like structures that collapse, once further irradiated, into 4 3D amorphous extended network.
引用
收藏
页码:7495 / 7501
页数:7
相关论文
共 50 条
  • [21] Dynamical stability of NiTi under high pressure and high temperature
    Hu, Cui-E
    Zeng, Zhao-Yi
    Niu, Zhen-Wei
    Cai, Ling-Cang
    Kong, Chun-Yang
    Cui, Yu-Ting
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 608 : 258 - 260
  • [22] Stability of subtilisin and lysozyme under high hydrostatic pressure
    Webb, JN
    Carpenter, JF
    Randolph, TW
    BIOTECHNOLOGY PROGRESS, 2000, 16 (04) : 630 - 636
  • [23] The phase stability of terephthalic acid under high pressure
    Sun, Lin
    Zhao, Yue
    Shang, Yujie
    Sun, Chenglin
    Zhou, Mi
    CHEMICAL PHYSICS LETTERS, 2017, 689 : 56 - 61
  • [24] Stability of LLM-172 under High Pressure
    Batyrev, I. G.
    Ciezak-Jenkins, J. A.
    Borstad, G. M.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2017, 2018, 1979
  • [25] STABILITY OF DEOXYRIBONUCLEIC ACID SOLUTIONS UNDER HIGH PRESSURE
    HEDEN, CG
    LINDAHL, T
    TOPLIN, I
    ACTA CHEMICA SCANDINAVICA, 1964, 18 (05): : 1150 - &
  • [26] Structural stability of TiO and TiN under high pressure
    Chauhan, Raja
    Singh, Sadhna
    Singh, Ram Kripal
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2008, 6 (02): : 277 - 282
  • [27] Structural stability of tin clathrates under high pressure
    Imai, T.
    Kume, T.
    Sasaki, S.
    Shimizu, H.
    Kaltzoglou, A.
    Faessler, T. F.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2010, 71 (04) : 587 - 589
  • [28] Probing Polymorphism with High Pressure
    Fabbiani, Francesca P. A.
    Pulham, Colin R.
    Parsons, Simon
    Allan, David R.
    Warren, John E.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C463 - C464
  • [29] CHEMICAL-REACTION UNDER HIGH-PRESSURE
    OGO, Y
    REVIEW OF PHYSICAL CHEMISTRY OF JAPAN, 1975, : 874 - 879
  • [30] Chemical equilibrium in hydrogenation reactions under high pressure
    Potter, Robert G.
    Somayazulu, Maddury S.
    Hemley, Russell J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242