Phosphoglucose Isomerase/Autocrine Motility Factor Mediates Epithelial and Mesenchymal Phenotype Conversions in Breast Cancer

被引:67
作者
Funasaka, Tatsuyoshi [1 ]
Hogan, Victor [1 ]
Raz, Avraham [1 ]
机构
[1] Wayne State Univ, Tumor Progress & Metastasis Program, Karmanos Canc Inst, Sch Med, Detroit, MI 48201 USA
关键词
TRANSCRIPTION FACTOR SNAIL; TUMOR PROGRESSION; CELL-LINES; E-CADHERIN; COLORECTAL-CANCER; GENE ENCODES; TRANSITION; ISOMERASE; DIFFERENTIATION; INVASIVENESS;
D O I
10.1158/0008-5472.CAN-09-0488
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Phosphoglucose isomerase/autocrine motility factor (PGI/AMF) is a housekeeping gene product/cytokine that catalyzes a step in glycolysis and gluconeogenesis, and acts as a multifunctional cytokine associated with aggressive tumors. PGI/AMF has been correlated significantly with breast cancer progression and poor prognosis in breast cancer. We show here that ectopic expression of PGI/AMF induced epithelial-to-mesenchymal transition (EMT) in MCF10A normal human breast epithelial cells, and inhibition of PGI/AMF expression triggered mesenchymal-to-epithelial transition (MET) in aggressive mesenchymal-type human breast cancer MDA-MB-231 cells. EMT in MCF10A cells was shown by morphologic changes and loss of E-cadherin/beta-catenin-mediated cell-cell adhesion, which is concomitant with the induction of the E-cadherin transcriptional repressor Snail and proteosome-dependent degradation of beta-catenin protein. Molecular analysis showed that PGI/AMF suppressed epithelial marker expressions and enhanced mesenchymal marker expressions. Silencing of PGI/AMF expression by RNA interference in MDA-MB-231 cells induced the reverse processes of EMT including altered cell shape, gain of epithelial marker, and reduction of mesenchymal marker, e.g., MET. Taken together, the results show the involvement of PGI/AMF in both EMT and MET: overexpression of PGI/AMF induces EMT in normal breast epithelial cells and reduction of PGI/AMF expression led to MET in aggressive breast cancer cells. These results suggest for the first time that PGI/AMF is a key gene to both EMT in the initiating step of cancer metastasis and MET in the later stage of metastasis during breast cancer progression. [Cancer Res 2009;69(13):5349-56]
引用
收藏
页码:5349 / 5356
页数:8
相关论文
共 43 条
[1]   Epidermal growth factor-induced epithelio-mesenchymal transition in human breast carcinoma cells [J].
Ackland, ML ;
Newgreen, DF ;
Fridman, M ;
Waltham, MC ;
Arvanitis, A ;
Minichiello, J ;
Price, JT ;
Thompson, EW .
LABORATORY INVESTIGATION, 2003, 83 (03) :435-448
[2]   The Snail genes as inducers of cell movement and survival: implications in development and cancer [J].
Barrallo-Gimeno, A ;
Nieto, MA .
DEVELOPMENT, 2005, 132 (14) :3151-3161
[3]  
Bates RC, 2005, CANCER BIOL THER, V4, P365
[4]   The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells [J].
Batlle, E ;
Sancho, E ;
Franci, C ;
Domínguez, D ;
Monfar, M ;
Baulida, J ;
de Herreros, AG .
NATURE CELL BIOLOGY, 2000, 2 (02) :84-89
[5]   THE DIAGNOSTIC VALIDITY OF THE SERUM TUMOR-MARKER PHOSPHOHEXOSE ISOMERASE (PHI) IN PATIENTS WITH GASTROINTESTINAL, KIDNEY, AND BREAST-CANCER [J].
BAUMANN, M ;
KAPPL, A ;
LANG, T ;
BRAND, K ;
SIEGFRIED, W ;
PATEROK, E .
CANCER INVESTIGATION, 1990, 8 (3-4) :351-356
[6]   Cadherins and catenins: Role in signal transduction and tumor progression [J].
Behrens, J .
CANCER AND METASTASIS REVIEWS, 1999, 18 (01) :15-30
[7]   Opinion - Migrating cancer stem cells - an integrated concept of malignant tumour progression [J].
Brabletz, T ;
Jung, A ;
Spaderna, S ;
Hlubek, F ;
Kirchner, T .
NATURE REVIEWS CANCER, 2005, 5 (09) :744-749
[8]   Wnt signaling: complexity at the surface [J].
Cadigan, KM ;
Liu, YI .
JOURNAL OF CELL SCIENCE, 2006, 119 (03) :395-402
[9]   The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression [J].
Cano, A ;
Pérez-Moreno, MA ;
Rodrigo, I ;
Locascio, A ;
Blanco, MJ ;
del Barrio, MG ;
Portillo, F ;
Nieto, MA .
NATURE CELL BIOLOGY, 2000, 2 (02) :76-83
[10]   Purification of a novel serine proteinase inhibitor from the skeletal muscle of white croaker (Argyrosomus argentatus) [J].
Cao, MJ ;
Osatomi, K ;
Matsuda, R ;
Ohkubo, M ;
Hara, K ;
Ishihara, T .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 272 (02) :485-489