A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images

被引:459
作者
Li, Qiaoliang [1 ]
Feng, Bowei [1 ]
Xie, LinPei [1 ]
Liang, Ping [1 ]
Zhang, Huisheng [1 ]
Wang, Tianfu [1 ]
机构
[1] Shenzhen Univ, Dept Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen 518060, Peoples R China
基金
美国国家科学基金会;
关键词
Cross-modality learning; deep learning; retinal image; vessel segmentation; BLOOD-VESSELS; COLOR IMAGES; CLASSIFICATION; EXTRACTION; ALGORITHM; NETWORKS; FEATURES; DATABASE; FILTER; LEVEL;
D O I
10.1109/TMI.2015.2457891
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a new supervised method for vessel segmentation in retinal images. This method remolds the task of segmentation as a problem of cross-modality data transformation from retinal image to vessel map. A wide and deep neural network with strong induction ability is proposed to model the transformation, and an efficient training strategy is presented. Instead of a single label of the center pixel, the network can output the label map of all pixels for a given image patch. Our approach outperforms reported state-of-the-art methods in terms of sensitivity, specificity and accuracy. The result of cross-training evaluation indicates its robustness to the training set. The approach needs no artificially designed feature and no preprocessing step, reducing the impact of subjective factors. The proposed method has the potential for application in image diagnosis of ophthalmologic diseases, and it may provide a new, general, high-performance computing framework for image segmentation.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 35 条
[1]   Automated Analysis of Retinal Images for Detection of Referable Diabetic Retinopathy [J].
Abramoff, Michael D. ;
Folk, James C. ;
Han, Dennis P. ;
Walker, Jonathan D. ;
Williams, David F. ;
Russell, Stephen R. ;
Massin, Pascale ;
Cochener, Beatrice ;
Gain, Philippe ;
Tang, Li ;
Lamard, Mathieu ;
Moga, Daniela C. ;
Quellec, Gwenole ;
Niemeijer, Meindert .
JAMA OPHTHALMOLOGY, 2013, 131 (03) :351-357
[2]   An Active Contour Model for Segmenting and Measuring Retinal Vessels [J].
Al-Diri, Bashir ;
Hunter, Andrew ;
Steel, David .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) :1488-1497
[3]   Trainable COSFIRE filters for vessel delineation with application to retinal images [J].
Azzopardi, George ;
Strisciuglio, Nicola ;
Vento, Mario ;
Petkov, Nicolai .
MEDICAL IMAGE ANALYSIS, 2015, 19 (01) :46-57
[4]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[5]   Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features [J].
Cheng, Erkang ;
Du, Liang ;
Wu, Yi ;
Zhu, Ying J. ;
Megalooikonomou, Vasileios ;
Ling, Haibin .
MACHINE VISION AND APPLICATIONS, 2014, 25 (07) :1779-1792
[6]  
Espona L, 2008, INT C PATT RECOG, P2128
[7]   An approach to localize the retinal blood vessels using bit planes and centerline detection [J].
Fraz, M. M. ;
Barman, S. A. ;
Remagnino, P. ;
Hoppe, A. ;
Basit, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (02) :600-616
[8]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[9]   An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation [J].
Fraz, Muhammad Moazam ;
Remagnino, Paolo ;
Hoppe, Andreas ;
Uyyanonvara, Bunyarit ;
Rudnicka, Alicja R. ;
Owen, Christopher G. ;
Barman, Sarah A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (09) :2538-2548
[10]   Detection and measurement of retinal vessels, in fundus images using amplitude modified second-order Gaussian filter [J].
Gang, L ;
Chutatape, O ;
Krishnan, SM .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (02) :168-172