Schemes of line modules I

被引:15
作者
Shelton, B [1 ]
Vancliff, M
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Univ Texas, Dept Math, Arlington, TX 76019 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2002年 / 65卷
基金
美国国家科学基金会;
关键词
D O I
10.1112/S0024610702003186
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that there exists a scheme that represents the functor of line modules over a graded algebra, and it is called the line scheme of the algebra. Its properties and its relationship to the point scheme are studied. If the line scheme of a quadratic, Auslander-regular algebra of global dimension 4 has dimension 1, then it determines the defining relations of the algebra. Moreover, the following counter-intuitive result is proved. If the zero locus of the defining relations of a quadratic (not necessarily regular) algebra on four generators with six defining relations is finite, then it determines the defining relations of the algebra. Although this result is non-commutative in nature, its proof uses only commutative theory. The structure of the line scheme and the point scheme of a 4-dimensional regular algebra is also used to determine basic incidence relations between line modules and point modules.
引用
收藏
页码:575 / 590
页数:16
相关论文
共 34 条
[1]   GRADED ALGEBRAS OF GLOBAL DIMENSION-3 [J].
ARTIN, M ;
SCHELTER, WF .
ADVANCES IN MATHEMATICS, 1987, 66 (02) :171-216
[2]   MODULES OVER REGULAR ALGEBRAS OF DIMENSION-3 [J].
ARTIN, M ;
TATE, J ;
VANDENBERGH, M .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :335-388
[3]  
Artin M., 1990, GROTHENDIECK FESTSCH, V1, P33
[4]  
Artin M., 1992, CONT MATH, P1
[5]  
EISENBUD D, 1995, CUMMUTATIVE ALGEBRA
[6]  
HARRIS J, 1992, ALGEBRAIC GEOMETRY
[7]   CENTRAL SINGULARITIES OF QUANTUM SPACES [J].
LEBRUYN, L .
JOURNAL OF ALGEBRA, 1995, 177 (01) :142-153
[8]   Central extensions of three dimensional Artin-Schelter regular algebras [J].
LeBruyn, L ;
Smith, SP ;
VandenBergh, M .
MATHEMATISCHE ZEITSCHRIFT, 1996, 222 (02) :171-212
[9]   HOMOGENIZED SL(2) [J].
LEBRUYN, L ;
SMITH, SP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) :725-730
[10]   ON QUANTUM SPACES OF LIE-ALGEBRAS [J].
LEBRUYN, L ;
VANDENBERGH, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (02) :407-414