SILICON APPLICATION IMPROVES GERMINATION AND VEGETATIVE GROWTH IN MAIZE GROWN UNDER SALT STRESS

被引:0
|
作者
Khan, Waqas-ud-Din [1 ]
Aziz, Tariq [1 ,2 ]
Waraich, Ejaz Ahmad [3 ]
Khalid, Muhammad [1 ]
机构
[1] Univ Agr Faisalabad, Inst Soil & Environm Sci, Faisalabad 38040, Faisalabad, Pakistan
[2] Univ Western Australia, Sch Plant Biol, 35 Stirling Highway, Crawley, WA 6009, Australia
[3] Univ Agr Faisalabad, Dept Agron, Faisalabad 38040, Pakistan
来源
关键词
Abiotic stress; salinity tolerance; germination; cereals; SALINITY TOLERANCE; LIPID-PEROXIDATION; IONIC COMPOSITION; ENZYME-ACTIVITIES; PLANT-GROWTH; H+-ATPASE; WHEAT; CULTIVARS; GENOTYPES; ROOTS;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Salinity stress is a major abiotic factor limiting growth and yield of agronomic crops including maize. The present study was conducted to categorize the latest maize cultivars according to their tolerance against salinity stress and to screen out the salt tolerant and sensitive maize cultivars at different growth stages. Initially 15 maize cultivars were categorized into three classes viz sensitive, medium and tolerant to salinity on the basis of germination parameters under control and 90 mM NaCl salinity. Eight selected cultivars were germinated in petri plates with 90 mM NaCl and 2 mM K2SiO3 in a second experiment. Application of Si increased all germination parameters under salinity stress irrespective of cultivars. Two cultivars contrasting in their salinity tolerance at germination (Syngenta 8441 and EV1089) were selected to evaluate role of Si at vegetative growth stage. Plants were grown in pots with 60 mM NaCl and 2 mM H2SiO3. Significant variation existed in both cultivars for growth and ionic concentration. Cultivar EV1089 performed better in non-saline conditions than Syngenta 8441; however, it could not tolerate salinity in root zone and significant reduction in biomass observed. Silicon application improved growth in both cultivars under salinity stress by reducing Na uptake and improving K uptake. Silicon nutrition management and selection of salinity tolerant cultivars can improve productivity of salt affected lands and more area can be taken under cultivation to feed ever increasing population.
引用
收藏
页码:937 / 944
页数:8
相关论文
共 50 条
  • [21] Exogenous melatonin improves seed germination in Limonium bicolor under salt stress
    Li, Junpeng
    Zhao, Chen
    Zhang, Mingjing
    Yuan, Fang
    Chen, Min
    PLANT SIGNALING & BEHAVIOR, 2019, 14 (11)
  • [22] Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions
    Kaya, Cengiz
    Tuna, Levent
    Higgs, David
    JOURNAL OF PLANT NUTRITION, 2006, 29 (08) : 1469 - 1480
  • [23] Seed Priming Improves Seed Germination and Seedling Growth of Isatis indigotica Fort. under Salt Stress
    Jiang, Xu-Wen
    Zhang, Cheng-Ran
    Wang, Wei-Hua
    Xu, Guang-Hai
    Zhang, Hai-Yan
    HORTSCIENCE, 2020, 55 (05) : 647 - 650
  • [24] SILICON APPLICATION IMPROVES Fe AND Zn USE EFFICIENCY AND GROWTH OF MAIZE GENOTYPES UNDER SALINE CONDITIONS
    Batool, Munaza
    Saqib, Muhammad
    Murtaza, Ghulam
    Basra, Shehzad M. A.
    Nawaz, Shafqat
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2015, 52 (02): : 447 - 453
  • [25] Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress
    Guan, Ya-jing
    Hu, Jin
    Wang, Xian-ju
    Shao, Chen-xia
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2009, 10 (06): : 427 - 433
  • [27] Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress
    Yajing GUAN Jin HU Xianju WANG Chenxia SHAO Seed Science Center College of Agriculture and Biotechnology Zhejiang University Hangzhou China Yuan Longping HighTech Agriculture Co Ltd Changsha China
    Journal of Zhejiang University(Science B:An International Biomedicine & Biotechnology Journal), 2009, (06) : 427 - 433
  • [28] Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress
    Ya-jing Guan
    Jin Hu
    Xian-ju Wang
    Chen-xia Shao
    Journal of Zhejiang University SCIENCE B, 2009, 10 : 427 - 433
  • [29] Exogenous application of melatonin improves the growth and physiological properties of blueberry seedlings under salt stress
    Jia, Wenfei
    Wei, Xiaoqiong
    Ma, Jingheng
    Wang, Lixin
    Li, Linyu
    Li, Jinying
    Wang, Ying
    Wu, Lin
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2023, 37 (01)
  • [30] Seed germination and seedling growth of Suaeda salsa under salt stress
    Duan, De-Yu
    Li, Wei-Qiang
    Liu, Xiao-Jing
    Hua Ouyang
    An, Ping
    ANNALES BOTANICI FENNICI, 2007, 44 (03) : 161 - 169