Genome reprogramming for synthetic biology

被引:5
作者
Standage-Beier, Kylie [1 ]
Wang, Xiao [2 ]
机构
[1] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Sch Biol & Hlth Syst Engn, Tempe, AZ 85287 USA
基金
美国国家卫生研究院;
关键词
CRISPR; genome engineering; synthetic biology; rational design; CRISPR-CAS; CHROMOSOMAL INTEGRATION; DIRECTED EVOLUTION; SYSTEMS; DNA; RECOMBINASE; NUCLEASES; DELETION; BACTERIA; CELLS;
D O I
10.1007/s11705-017-1618-2
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The ability to go from a digitized DNA sequence to a predictable biological function is central to synthetic biology. Genome engineering tools facilitate rewriting and implementation of engineered DNA sequences. Recent development of new programmable tools to reengineer genomes has spurred myriad advances in synthetic biology. Tools such as clustered regularly interspace short palindromic repeats enable RNA-guided rational redesign of organisms and implementation of synthetic gene systems. New directed evolution methods generate organisms with radically restructured genomes. These restructured organisms have useful new phenotypes for biotechnology, such as bacteriophage resistance and increased genetic stability. Advanced DNA synthesis and assembly methods have also enabled the construction of fully synthetic organisms, such as J. Craig Venter Institute (JCVI)-syn 3.0. Here we summarize the recent advances in programmable genome engineering tools.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 77 条
[1]   Homology-Integrated CRISPR-Cas (HI-CRISPR) System for One-Step Multigene Disruption in Saccharomyces cerevisiae [J].
Bao, Zehua ;
Xiao, Han ;
Lang, Jing ;
Zhang, Lu ;
Xiong, Xiong ;
Sun, Ning ;
Si, Tong ;
Zhao, Huimin .
ACS SYNTHETIC BIOLOGY, 2015, 4 (05) :585-594
[2]   Genome evolution and adaptation in a long-term experiment with Escherichia coli [J].
Barrick, Jeffrey E. ;
Yu, Dong Su ;
Yoon, Sung Ho ;
Jeong, Haeyoung ;
Oh, Tae Kwang ;
Schneider, Dominique ;
Lenski, Richard E. ;
Kim, Jihyun F. .
NATURE, 2009, 461 (7268) :1243-U74
[3]   Rapid and Efficient One-Step Metabolic Pathway Integration in E-coli [J].
Bassalo, Marcelo C. ;
Garst, Andrew D. ;
Halweg-Edwards, Andrea L. ;
Grau, William C. ;
Domaille, Dylan W. ;
Mutalik, Vivek K. ;
Arkin, Adam P. ;
Gill, Ryan T. .
ACS SYNTHETIC BIOLOGY, 2016, 5 (07) :561-568
[4]  
Brophy JAN, 2014, NAT METHODS, V11, P508, DOI [10.1038/NMETH.2926, 10.1038/nmeth.2926]
[5]   Small CRISPR RNAs guide antiviral defense in prokaryotes [J].
Brouns, Stan J. J. ;
Jore, Matthijs M. ;
Lundgren, Magnus ;
Westra, Edze R. ;
Slijkhuis, Rik J. H. ;
Snijders, Ambrosius P. L. ;
Dickman, Mark J. ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
van der Oost, John .
SCIENCE, 2008, 321 (5891) :960-964
[6]   CRISPR technologies for bacterial systems: Current achievements and future directions [J].
Choi, Kyeong Rok ;
Lee, Sang Yup .
BIOTECHNOLOGY ADVANCES, 2016, 34 (07) :1180-1209
[7]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[8]   Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B [J].
Cooper, VS ;
Schneider, D ;
Blot, M ;
Lenski, RE .
JOURNAL OF BACTERIOLOGY, 2001, 183 (09) :2834-2841
[9]   System-level genome editing in microbes [J].
Csorgo, Balint ;
Nyerges, Akos ;
Posfai, Gyorgy ;
Feher, Tamas .
CURRENT OPINION IN MICROBIOLOGY, 2016, 33 :113-122
[10]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343