A New LMI Based H∞ Observer Design Method for Lipschitz Nonlinear Systems

被引:0
|
作者
Zemouche, A. [1 ]
Rajamani, R. [2 ]
Trinh, H. [3 ]
Zasadzinski, M. [1 ]
机构
[1] Univ Lorraine, CRAN, CNRS, UMR 7039, F-54400 Cosnes Et Romain, France
[2] Univ Minnesota, Dept Mech Engn, Lab Innovat Sensing Estimat & Control, Minneapolis, MN 55455 USA
[3] Deakin Univ, Sch Engn, Geelong, Vic 3217, Australia
来源
2016 EUROPEAN CONTROL CONFERENCE (ECC) | 2016年
关键词
Observers design; Lipschitz systems; LMI approach; H-infinity synthesis;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note deals with H-infinity observer design for Lipschitz nonlinear systems. Thanks to a new and judicious use of the Young's relation, new and less conservative LMI conditions are proposed to solve the problem of observer design. Two LMI design methods are provided. First, we propose a new enhanced LMI technique that allows to improve the standard LMI methods for Lipschitz systems. A second method is proposed to improve more the first one. It consists in combining the first method and the well known LPV approach. This technique exploits the advantages of the LPV approach for larger Lipschitz constants and in the second time, it allows to reduce the high number of LMIs of the classical LPV method. An application to a neural mass model is presented to show the effectiveness of the proposed method.
引用
收藏
页码:2011 / 2016
页数:6
相关论文
共 50 条
  • [1] H∞ Circle Criterion Observer Design for Lipschitz Nonlinear Systems with Enhanced LMI Conditions
    Zemouche, A.
    Rajamani, R.
    Boulkroune, B.
    Rafaralahy, H.
    Zasadzinski, M.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 131 - 136
  • [2] Circle criterion-based, H∞, observer design for Lipschitz and monotonic nonlinear systems - Enhanced LMI conditions and constructive discussions
    Zemouche, Ali
    Rajamani, Rajesh
    Phanomchoeng, Gridsada
    Boulkroune, Boulaid
    Rafaralahy, Hugues
    Zasadzinski, Michel
    AUTOMATICA, 2017, 85 : 412 - 425
  • [3] H∞ Observer-Based Stabilization for Lipschitz Nonlinear Systems
    Zemouche, A.
    Zerrougui, M.
    Boulkroune, B.
    Bedouhene, F.
    Souley-Ali, H.
    Zasadzinski, M.
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2017 - 2022
  • [4] H∞ observer design for Lipschitz nonlinear systems
    Pertew, A. M.
    Marquez, H. J.
    Zhao, Q.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (07) : 1211 - 1216
  • [5] On LMI conditions to design observers for Lipschitz nonlinear systems
    Zemouche, Ali
    Boutayeb, Mohamed
    AUTOMATICA, 2013, 49 (02) : 585 - 591
  • [6] An LMI-Based Observer Design Method for a Class of Nonlinear Systems
    Mohite, Shivaraj
    Alma, Marouane
    Zemouche, Ali
    2024 EUROPEAN CONTROL CONFERENCE, ECC 2024, 2024, : 1282 - 1287
  • [7] Convex Optimization Based Dual Gain Observer Design for Lipschitz Nonlinear Systems
    Zemouche, A.
    Rajamani, R.
    Boulkroune, B.
    Rafaralahy, H.
    Zasadzinski, M.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 125 - 130
  • [8] Observer-Based Stabilization of Lipschitz Nonlinear Systems by Using a New Matrix-Multiplier-Based LMI Approach
    Mohite, Shivaraj
    Alma, Marouane
    Zemouche, Ali
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3723 - 3728
  • [9] Enhanced LMI conditions for observer-based H∞ stabilization of Lipschitz discrete-time systems
    Gasmi, Noussaiba
    Boutayeb, Mohamed
    Thabet, Assem
    Aoun, Mohamed
    EUROPEAN JOURNAL OF CONTROL, 2018, 44 : 80 - 89
  • [10] LMI Feasibility Improvement to Design Observers for a Class of Lipschitz Nonlinear Systems
    Arezki, H.
    Bouhadjra, D.
    Chaib-Draa, K.
    Zemouche, A.
    N'doye, A.
    Laleg-Kirati, T. M.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 6151 - 6155