Effect of population imbalance on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid Fermi gas

被引:49
作者
Tempere, J. [1 ,2 ]
Klimin, S. N. [1 ]
Devreese, J. T. [1 ,3 ]
机构
[1] Univ Antwerp, TFVS, B-2020 Antwerp, Belgium
[2] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA
[3] Tech Univ Eindhoven, NL-5600 MB Eindhoven, Netherlands
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
关键词
boson systems; critical points; fermion systems; fluctuations; phase diagrams; phase separation; phase transformations; superfluidity; BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; SUPERCONDUCTIVITY; BCS; TEMPERATURE; CROSSOVER; EVOLUTION; SYSTEMS; DIAGRAM;
D O I
10.1103/PhysRevA.79.053637
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes the breakdown of superfluidity in a two-dimensional Bose gas or a two-dimensional gas of paired fermions. In the latter case, a population imbalance between the two pairing partners in the Fermi mixture is known to influence pairing characteristics. Here, we investigate the effects of imbalance on the two-dimensional BKT superfluid transition and show that superfluidity is even more sensitive to imbalance than for three-dimensional systems. Finite-temperature phase diagrams are derived using the functional integral formalism in combination with a hydrodynamic action functional for the phase fluctuations. This allows to identify a phase-separation region and tricritical points due to imbalance. In contrast to superfluidity in the three-dimensional case, the effect of imbalance is also pronounced in the strong-coupling regime.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Discontinuities in the First and Second Sound Velocities at the Berezinskii-Kosterlitz-Thouless Transition [J].
Ozawa, Tomoki ;
Stringari, Sandro .
PHYSICAL REVIEW LETTERS, 2014, 112 (02)
[42]   Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes [J].
Bombin, Raul ;
Mazzanti, Ferran ;
Boronat, Jordi .
PHYSICAL REVIEW A, 2019, 100 (06)
[43]   Possible observation of the Berezinskii-Kosterlitz-Thouless transition in boron-doped diamond films [J].
Coleman, Christopher ;
Bhattacharyya, Somnath .
AIP ADVANCES, 2017, 7 (11)
[44]   Berezinskii-Kosterlitz-Thouless Transition of the Two-Dimensional XY Model on the Honeycomb Lattice [J].
Jiang, Fu-Jiun .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (10)
[45]   Machine-Learning Detection of the Berezinskii-Kosterlitz-Thouless Transitions [J].
Mochizuki, Masahito ;
Miyajima, Yusuke .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2025, 94 (03)
[46]   Quantum phase transitions and Berezinskii-Kosterlitz-Thouless temperature in a two-dimensional spin-orbit-coupled Fermi gas [J].
Devreese, Jeroen P. A. ;
Tempere, Jacques ;
de Melo, Carlos A. R. Sa .
PHYSICAL REVIEW A, 2015, 92 (04)
[47]   Comment on "Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes" [J].
Cinti, Fabio ;
Boninsegni, Massimo .
PHYSICAL REVIEW A, 2020, 102 (04)
[48]   Precision Many-Body Study of the Berezinskii-Kosterlitz-Thouless Transition and Temperature-Dependent Properties in the Two-Dimensional Fermi Gas [J].
He, Yuan-Yao ;
Shi, Hao ;
Zhang, Shiwei .
PHYSICAL REVIEW LETTERS, 2022, 129 (07)
[49]   Cooper pairs with zero center-of-mass momentum and their first-order correlation function in a two-dimensional ultracold Fermi gas near a Berezinskii-Kosterlitz-Thouless transition [J].
Matsumoto, Morio ;
Inotani, Daisuke ;
Ohashi, Yoji .
PHYSICAL REVIEW A, 2016, 93 (01)
[50]   A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models [J].
Richter-Laskowska, M. ;
Khan, H. ;
Trivedi, N. ;
Maska, M. M. .
CONDENSED MATTER PHYSICS, 2018, 21 (03)