Effect of population imbalance on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid Fermi gas

被引:49
作者
Tempere, J. [1 ,2 ]
Klimin, S. N. [1 ]
Devreese, J. T. [1 ,3 ]
机构
[1] Univ Antwerp, TFVS, B-2020 Antwerp, Belgium
[2] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA
[3] Tech Univ Eindhoven, NL-5600 MB Eindhoven, Netherlands
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
关键词
boson systems; critical points; fermion systems; fluctuations; phase diagrams; phase separation; phase transformations; superfluidity; BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; SUPERCONDUCTIVITY; BCS; TEMPERATURE; CROSSOVER; EVOLUTION; SYSTEMS; DIAGRAM;
D O I
10.1103/PhysRevA.79.053637
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes the breakdown of superfluidity in a two-dimensional Bose gas or a two-dimensional gas of paired fermions. In the latter case, a population imbalance between the two pairing partners in the Fermi mixture is known to influence pairing characteristics. Here, we investigate the effects of imbalance on the two-dimensional BKT superfluid transition and show that superfluidity is even more sensitive to imbalance than for three-dimensional systems. Finite-temperature phase diagrams are derived using the functional integral formalism in combination with a hydrodynamic action functional for the phase fluctuations. This allows to identify a phase-separation region and tricritical points due to imbalance. In contrast to superfluidity in the three-dimensional case, the effect of imbalance is also pronounced in the strong-coupling regime.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY Models [J].
Bighin, Giacomo ;
Defenu, Nicolo ;
Nandori, Istvan ;
Salasnich, Luca ;
Trombettoni, Andrea .
PHYSICAL REVIEW LETTERS, 2019, 123 (10)
[32]   Scaling of the magnetic permeability at the Berezinskii-Kosterlitz-Thouless transition from Coulomb gas simulations [J].
Diaz-Mendez, Rogelio ;
Lidrnar, Jack ;
Wallin, Mats .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
[33]   Universality of the Berezinskii-Kosterlitz-Thouless type of phase transition in the dipolar XY-model [J].
Vasiliev, A. Yu ;
Tarkhov, A. E. ;
Menshikov, L. I. ;
Fedichev, P. O. ;
Fischer, Uwe R. .
NEW JOURNAL OF PHYSICS, 2014, 16
[34]   Berezinskii-Kosterlitz-Thouless Phase Transitions with Long-Range Couplings [J].
Giachetti, Guido ;
Defenu, Nicolo ;
Ruffo, Stefano ;
Trombettoni, Andrea .
PHYSICAL REVIEW LETTERS, 2021, 127 (15)
[35]   Berezinskii-Kosterlitz-Thouless transition and anomalous metallic phase in a hybrid Josephson junction array [J].
Bottcher, C. G. L. ;
Nichele, F. ;
Shabani, J. ;
Palmstrom, C. J. ;
Marcus, C. M. .
PHYSICAL REVIEW B, 2024, 110 (18)
[36]   Berezinskii-Kosterlitz-Thouless phase transition in a 2D-XY ferromagnetic monolayer [J].
Wang, Jiesu .
JOURNAL OF SEMICONDUCTORS, 2021, 42 (12)
[37]   Thermodynamic Quantities of Imbalanced 2D Fermi Gases Near the Berezinskii-Kosterlitz-Thouless Transition [J].
Tempere, J. ;
Klimin, S. N. ;
Devreese, J. T. ;
Van Schaeybroeck, B. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 158 (1-2) :43-50
[38]   Berezinskii-Kosterlitz-Thouless crossover in a photonic lattice [J].
Small, Eran ;
Pugatch, Rami ;
Silberberg, Yaron .
PHYSICAL REVIEW A, 2011, 83 (01)
[39]   A scheme to observe universal breathing mode and Berezinskii-Kosterlitz-Thouless phase transition in a two-dimensional photon gas [J].
Vyas, Vivek M. ;
Panigrahi, Prasanta K. ;
Banerji, J. .
PHYSICS LETTERS A, 2014, 378 (20) :1434-1437
[40]   Discontinuities in the First and Second Sound Velocities at the Berezinskii-Kosterlitz-Thouless Transition [J].
Ozawa, Tomoki ;
Stringari, Sandro .
PHYSICAL REVIEW LETTERS, 2014, 112 (02)