Effect of population imbalance on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid Fermi gas

被引:49
作者
Tempere, J. [1 ,2 ]
Klimin, S. N. [1 ]
Devreese, J. T. [1 ,3 ]
机构
[1] Univ Antwerp, TFVS, B-2020 Antwerp, Belgium
[2] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA
[3] Tech Univ Eindhoven, NL-5600 MB Eindhoven, Netherlands
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
关键词
boson systems; critical points; fermion systems; fluctuations; phase diagrams; phase separation; phase transformations; superfluidity; BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; SUPERCONDUCTIVITY; BCS; TEMPERATURE; CROSSOVER; EVOLUTION; SYSTEMS; DIAGRAM;
D O I
10.1103/PhysRevA.79.053637
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes the breakdown of superfluidity in a two-dimensional Bose gas or a two-dimensional gas of paired fermions. In the latter case, a population imbalance between the two pairing partners in the Fermi mixture is known to influence pairing characteristics. Here, we investigate the effects of imbalance on the two-dimensional BKT superfluid transition and show that superfluidity is even more sensitive to imbalance than for three-dimensional systems. Finite-temperature phase diagrams are derived using the functional integral formalism in combination with a hydrodynamic action functional for the phase fluctuations. This allows to identify a phase-separation region and tricritical points due to imbalance. In contrast to superfluidity in the three-dimensional case, the effect of imbalance is also pronounced in the strong-coupling regime.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Berezinskii-Kosterlitz-Thouless transition in rhenium nitride films [J].
Takiguchi, Kosuke ;
Krockenberger, Yoshiharu ;
Taniyasu, Yoshitaka ;
Yamamoto, Hideki .
PHYSICAL REVIEW B, 2024, 110 (02)
[22]   Berezinskii-Kosterlitz-Thouless transitions in a ferromagnetic superfluid: Effects of axial magnetization [J].
Underwood, Andrew P. C. ;
Groszek, Andrew J. ;
Yu, Xiaoquan ;
Blakie, P. B. ;
Williamson, L. A. .
PHYSICAL REVIEW A, 2024, 110 (01)
[23]   Sharpness of the Berezinskii-Kosterlitz-Thouless Transition in Disordered NbN Films [J].
Weitzel, Alexander ;
Pfaffinger, Lea ;
Maccari, Ilaria ;
Kronfeldner, Klaus ;
Huber, Thomas ;
Fuchs, Lorenz ;
Mallord, James ;
Linzen, Sven ;
Il'Ichev, Evgeni ;
Paradiso, Nicola ;
Strunk, Christoph .
PHYSICAL REVIEW LETTERS, 2023, 131 (08)
[24]   Transport signature of the magnetic Berezinskii-Kosterlitz-Thouless transition [J].
Kim, Se Kwon ;
Chung, Suk Bum .
SCIPOST PHYSICS, 2021, 10 (03)
[25]   Berezinskii-Kosterlitz-Thouless transitions in an easy-plane ferromagnetic superfluid [J].
Underwood, Andrew P. C. ;
Groszek, Andrew J. ;
Yu, Xiaoquan ;
Blakie, P. B. ;
Williamson, L. A. .
PHYSICAL REVIEW RESEARCH, 2023, 5 (01)
[26]   Anomalous energy transport in the Berezinskii-Kosterlitz-Thouless phase [J].
Hiura, Ken .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2025, 2025 (05)
[27]   Berezinskii-Kosterlitz-Thouless transition from neural network flows [J].
Ng, Kwai-Kong ;
Huang, Ching-Yu ;
Lin, Feng-Li .
PHYSICAL REVIEW E, 2023, 108 (03)
[28]   Berezinskii-Kosterlitz-Thouless transition in homogeneously disordered superconducting films [J].
Koenig, E. J. ;
Levchenko, A. ;
Protopopov, I. V. ;
Gornyi, I. V. ;
Burmistrov, I. S. ;
Mirlin, A. D. .
PHYSICAL REVIEW B, 2015, 92 (21)
[29]   Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting [J].
Ryzhov, V. N. ;
Tareyeva, E. E. ;
Fomin, Yu D. ;
Tsiok, E. N. .
PHYSICS-USPEKHI, 2017, 60 (09) :857-885
[30]   Berezinskii-Kosterlitz-Thouless transition in disordered multichannel Luttinger liquids [J].
Jones, Max ;
Lerner, Igor V. ;
Yurkevich, Igor V. .
PHYSICAL REVIEW B, 2017, 96 (17)