SUBHARMONIC SOLUTIONS FOR A CLASS OF LAGRANGIAN SYSTEMS

被引:2
|
作者
Bahrouni, Anouar [1 ]
Izydorek, Marek [2 ]
Janczewska, Joanna [2 ]
机构
[1] Univ Monastir, Dept Math, Fac Sci, Monastir 5019, Tunisia
[2] Gdansk Univ Technol, Fac Appl Phys & Math, Narutowicza 11-12, PL-80233 Gdansk, Poland
来源
关键词
Periodic solution; Lagrangian system; critical point; homoclinic orbit; HOMOCLINIC SOLUTIONS; HILBERT-SPACES; CONLEY INDEX; EXISTENCE; ORBITS;
D O I
10.3934/dcdss.2019121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that second order Hamiltonian systems -(u) over dot = V-u(t,u) with a potential V: R x R-N -> R of class C-1, periodic in time and superquadratic at infinity with respect to the space variable have subharmonic solutions. Our intention is to generalise a result on subharmonics for Hamiltonian systems with a potential satisfying the global Ambrosetti-Rabinowitz condition from [14]. Indeed, we weaken the latter condition in a neighbourhood of 0 is an element of R-N. We will also discuss when subharmonics pass to a nontrivial homoclinic orbit.
引用
收藏
页码:1841 / 1850
页数:10
相关论文
共 50 条