FOUR-MANIFOLDS WITH POSITIVE YAMABE CONSTANT

被引:5
作者
Fu, Hai-Ping [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang, Jiangxi, Peoples R China
关键词
four-manifold; Einstein manifold; harmonic curvature; harmonic Weyl tensor; Yamabe constant; EINSTEIN MANIFOLDS; CURVATURE; CLASSIFICATION; THEOREM;
D O I
10.2140/pjm.2018.296.79
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We refine a theorem due to Gursky (2000). As applications, we give some rigidity theorems on four-manifolds with positive Yamabe constant. We recover some of Gursky's results (1998, 2000). We prove some classification theorems of four-manifolds according to some conformal invariants, which reprove and generalize the conformally invariant sphere theorem of Chang, Gursky and Yang (2003).
引用
收藏
页码:79 / 104
页数:26
相关论文
共 30 条
[1]  
Aubin T., 1998, Springer Monographs in Mathematics
[2]  
Besse A. L., 1987, ERGEBNISSE MATH, V3
[3]  
Böhm C, 2008, ANN MATH, V167, P1079
[4]  
Bour V., 2010, PREPRINT
[5]  
Bour V, 2015, ANN SCI ECOLE NORM S, V48, P41
[6]  
Bourguignon J.P., 1990, Progress in Nonlinear Differential Equations and Their Applications, V4, P251
[8]   Classification of manifolds with weakly 1/4-pinched curvatures [J].
Brendle, Simon ;
Schoen, Richard M. .
ACTA MATHEMATICA, 2008, 200 (01) :1-13
[9]   Integral pinched shrinking Ricci solitons [J].
Catino, Giovanni .
ADVANCES IN MATHEMATICS, 2016, 303 :279-294
[10]   ON CONFORMALLY FLAT MANIFOLDS WITH CONSTANT POSITIVE SCALAR CURVATURE [J].
Catino, Giovanni .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) :2627-2634