Decomposition of Nonconvex Optimization via Bi-Level Distributed ALADIN

被引:32
作者
Engelmann, Alexander [1 ]
Jiang, Yuning [2 ]
Houska, Boris [2 ]
Faulwasser, Timm [1 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, D-76131 Karlsruhe, Germany
[2] Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[3] TU Dortmund Univ, Dept Elect Engn & Informat Technol, D-44227 Dortmund, Germany
来源
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS | 2020年 / 7卷 / 04期
基金
欧盟地平线“2020”;
关键词
Alternating direction of multipliers method (ADMM); augmented Lagrangian alternating direction inexact Newton (ALADIN); conjugate gradient (CG); decentralized optimization; decomposition; distributed model predictive control; distributed optimal power flow; distributed optimization; ALTERNATING DIRECTION METHOD; SUPERLINEAR CONVERGENCE; LINEAR CONVERGENCE; ALGORITHM; CONSENSUS; MULTIPLIERS; ADMM;
D O I
10.1109/TCNS.2020.3005079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decentralized optimization algorithms are of interest in different contexts, e.g., optimal power flow or distributed model predictive control, as they avoid central coordination and enable decomposition of large-scale problems. In case of constrained nonconvex problems, only a few algorithms are currently available-often with limited performance or lacking convergence guarantee. This article proposes a framework for decentralized nonconvex optimization via bi-level distribution of the augmented Lagrangian alternating direction inexact Newton (ALADIN) algorithm. Bi-level distribution means that the outer ALADIN structure is combined with an inner distribution/decentralization level solving a condensed variant of ALADIN's convex coordination quadratic program (QP) by decentralized algorithms. We provide sufficient conditions for local convergence while allowing for inexact decentralized/distributed solutions of the coordination QP. Moreover, we show how decentralized variants of conjugate gradient and alternating direction of multipliers method (ADMM) can be employed at the inner level. We draw upon examples from power systems and robotics to illustrate the performance of the proposed framework.
引用
收藏
页码:1848 / 1858
页数:11
相关论文
共 37 条
[1]   Reaching the superlinear convergence phase of the CG method [J].
Axelsson, O. ;
Karatson, J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 260 :244-257
[2]   Superlinear convergence of conjugate gradients [J].
Beckermann, B ;
Kuijlaars, ABJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) :300-329
[3]  
Bertsekas Dimitri P, 1989, PARALLEL DISTRIBUTED, V23
[4]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[5]  
Calkins H, 2017, J ARRYTHM, V33, P369, DOI 10.1016/j.joa.2017.08.001
[6]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[7]   Toward Distributed OPF Using ALADIN [J].
Engelmann, Alexander ;
Jiang, Yuning ;
Muehlpfordt, Tillmann ;
Houska, Boris ;
Faulwasser, Timm .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (01) :584-594
[8]  
Engelmann A, 2018, P AMER CONTR CONF, P6188, DOI 10.23919/ACC.2018.8431090
[9]   A distributed approach to the OPF problem [J].
Erseghe, Tomaso .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2015, :1-13
[10]   Distributed Optimal Power Flow Using ADMM [J].
Erseghe, Tomaso .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (05) :2370-2380