Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis

被引:1528
作者
Gong, Ming [1 ]
Zhou, Wu [2 ]
Tsai, Mon-Che [3 ]
Zhou, Jigang [4 ]
Guan, Mingyun [1 ]
Lin, Meng-Chang [1 ]
Zhang, Bo [1 ]
Hu, Yongfeng [4 ]
Wang, Di-Yan [1 ]
Yang, Jiang [1 ]
Pennycook, Stephen J. [5 ]
Hwang, Bing-Joe [3 ]
Dai, Hongjie [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[3] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 10607, Taiwan
[4] Canadian Light Source Inc, Saskatoon, SK S7N 0X4, Canada
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
加拿大自然科学与工程研究理事会;
关键词
NI; OXIDATION; ELECTRODE; KINETICS; ENERGY;
D O I
10.1038/ncomms5695
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves similar to 20 mA cm(-2) at a voltage of 1.5V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts.
引用
收藏
页数:6
相关论文
共 28 条
  • [21] Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces
    Sheng, Wenchao
    Myint, MyatNoeZin
    Chen, Jingguang G.
    Yan, Yushan
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (05) : 1509 - 1512
  • [22] Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations
    Skulason, Egill
    Tripkovic, Vladimir
    Bjorketun, Marten E.
    Gudmundsdottir, Sigridur
    Karlberg, Gustav
    Rossmeisl, Jan
    Bligaard, Thomas
    Jonsson, Hannes
    Norskov, Jens K.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (42) : 18182 - 18197
  • [23] The impact of widespread deployment of fuel cell vehicles on platinum demand and price
    Sun, Yongling
    Delucchi, Mark
    Ogden, Joan
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) : 11116 - 11127
  • [24] A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
    Suntivich, Jin
    May, Kevin J.
    Gasteiger, Hubert A.
    Goodenough, John B.
    Shao-Horn, Yang
    [J]. SCIENCE, 2011, 334 (6061) : 1383 - 1385
  • [25] Mesoporous Co3O4 as an electrocatalyst for water oxidation
    Tueysuez, Harun
    Hwang, Yun Jeong
    Khan, Sher Bahadar
    Asiri, Abdullah Mohamed
    Yang, Peidong
    [J]. NANO RESEARCH, 2013, 6 (01) : 47 - 54
  • [26] Kinetics of the Hydrogen Electrode Reaction
    Vilekar, Saurabh A.
    Fishtik, Ilie
    Datta, Ravindra
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) : B1040 - B1050
  • [27] Solar Water Splitting Cells
    Walter, Michael G.
    Warren, Emily L.
    McKone, James R.
    Boettcher, Shannon W.
    Mi, Qixi
    Santori, Elizabeth A.
    Lewis, Nathan S.
    [J]. CHEMICAL REVIEWS, 2010, 110 (11) : 6446 - 6473
  • [28] Recent progress in alkaline water electrolysis for hydrogen production and applications
    Zeng, Kai
    Zhang, Dongke
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2010, 36 (03) : 307 - 326