Digital Twin-Assisted Adaptive DNN Inference in Industrial Internet of Things

被引:6
作者
Hu, Shisheng [1 ]
Li, Mushu [1 ]
Gao, Jie [2 ]
Zhou, Conghao [1 ]
Shen, Xuemin [1 ]
机构
[1] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
[2] Carleton Univ, Sch Informat Technol, Ottawa, ON, Canada
来源
2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022) | 2022年
关键词
Edge intelligence; digital twin; DNN partitioning; Industrial Internet of Things (IIoT);
D O I
10.1109/GLOBECOM48099.2022.10001005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate digital twin (DT)-assisted adaptive deep neural network (DNN) inference in the Industrial Internet of Things (IIoT). We consider a scenario that an edge server has a full-size DNN for high-accuracy inference, while an IIoT device has a lightweight DNN for fast on-device inference. The IIoT device generates computing tasks, such as object recognition, to be processed by DNN. For each task, a local controller at the network edge determines whether or not to offload the task to the edge server before it enters each layer of the lightweight DNN. The objective is to find the task offloading point that maximizes a utility including delay, inference accuracy, and on-device energy consumption. To achieve this objective, we propose an online DT-assisted task offloading scheme, which exploits DTs to capture the task processing status at the IIoT device and the workload at the edge server. Simulation results demonstrate the excellent performance of the proposed adaptive DT-assisted DNN inference on delay, inference accuracy, and on-device energy consumption.
引用
收藏
页码:1025 / 1030
页数:6
相关论文
共 15 条
[1]  
Ferguson T. S., Optimal stopping and applications
[2]   Task Partitioning and Offloading in DNN-Task Enabled Mobile Edge Computing Networks [J].
Gao, Mingjin ;
Shen, Rujing ;
Shi, Long ;
Qi, Wen ;
Li, Jun ;
Li, Yonghui .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (04) :2435-2445
[3]   Optimal Mobile Computation Offloading with Hard Deadline Constraints [J].
Hekmati, Arvin ;
Teymoori, Peyvand ;
Todd, Terence D. ;
Zhao, Dongmei ;
Karakostas, George .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2020, 19 (09) :2160-2173
[4]  
Kang YP, 2017, TWENTY-SECOND INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS (ASPLOS XXII), P615, DOI 10.1145/3037697.3037698
[5]   Digital-Twin-Enabled 6G: Vision, Architectural Trends, and Future Directions [J].
Khan, Latif U. ;
Saad, Walid ;
Niyato, Dusit ;
Han, Zhu ;
Hong, Choong Seon .
IEEE COMMUNICATIONS MAGAZINE, 2022, 60 (01) :74-80
[6]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[7]  
Luan T. H., 2021, ARXIV210507182
[8]   Augmented Reality Maintenance Assistant Using YOLOv5 [J].
Malta, Ana ;
Mendes, Mateus ;
Farinha, Torres .
APPLIED SCIENCES-BASEL, 2021, 11 (11)
[9]  
Mohammed T, 2020, IEEE INFOCOM SER, P854, DOI [10.1109/INFOCOM41043.2020.9155237, 10.1109/infocom41043.2020.9155237]
[10]   Holistic Network Virtualization and Pervasive Network Intelligence for 6G [J].
Shen, Xuemin ;
Gao, Jie ;
Wu, Wen ;
Li, Mushu ;
Zhou, Conghao ;
Zhuang, Weihua .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2022, 24 (01) :1-30