On topological classification of non-archimedean Frechet spaces

被引:4
作者
Sliwa, W [1 ]
机构
[1] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
non-archimedean; Frechet spaces; homeomorphisms;
D O I
10.1023/B:CMAJ.0000042384.21869.5d
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any infinite-dimensional non-archimedean Frechet space E is homeomorphic to D-N where D is a discrete space with card(D) = dens(E). It follows that infinite-dimensional non-archimedean Frechet spaces E and F are homeomorphic if and only if dens(E) = dens(F). In particular, any infinite-dimensional non-archimedean Frechet space of countable type over a field K is homeomorphic to the non-archimedean Frechet space K-N.
引用
收藏
页码:457 / 463
页数:7
相关论文
共 50 条
[41]   URS and bi-URS for Meromorphic Functions in a non-Archimedean Field [J].
H. H. Khoai ;
V. H. An .
p-Adic Numbers, Ultrametric Analysis and Applications, 2020, 12 :276-284
[42]   Truncated Sharing of Subsets and Uniqueness of Meromorphic Functions in a Non-Archimedean Field [J].
An, Vu Hoai ;
Chanthaphone, Phommavong .
P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2025, 17 (03) :243-259
[43]   URS and bi-URS for Meromorphic Functions in a non-Archimedean Field [J].
Khoai, H. H. ;
An, V. H. .
P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2020, 12 (04) :276-284
[44]   APPROXIMATION OF THE JENSEN TYPE FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN C*-ALGEBRAS [J].
Jang, Sun Young ;
Saadati, Reza .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (03) :472-491
[45]   Topological structure of solution sets for impulsive differential inclusions in Frechet spaces [J].
Djebali, Smail ;
Gorniewicz, Lech ;
Ouahab, Abdelghani .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) :2141-2169
[46]   Generalized topological function spaces and a classification of generalized computer topological spaces [J].
Georgiou, D. N. ;
Han, Sang-Eon .
FILOMAT, 2012, 26 (03) :539-552
[47]   On metric properties of unconventional limit sets of contractive non-Archimedean dynamical systems [J].
Mukhamedov, Farrukh ;
Khakimov, Otabek .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2016, 31 (04) :506-524
[48]   Invariant subspaces for non-normable Frechet spaces [J].
Menet, Quentin .
ADVANCES IN MATHEMATICS, 2018, 339 :495-539
[49]   Value sharing problems for differential and difference polynomials of meromorphic functions in a non-Archimedean field [J].
An V.H. ;
Hoa P.N. ;
Khoai H.H. .
p-Adic Numbers, Ultrametric Analysis and Applications, 2017, 9 (1) :1-14
[50]   Big Picard theorem for jet differentials and non-archimedean Ax-Lindemann theorem [J].
Huynh, Dinh Tuan ;
Sun, Ruiran ;
Xie, Song-Yan .
JOURNAL OF NUMBER THEORY, 2023, 253 :257-277