On topological classification of non-archimedean Frechet spaces

被引:4
作者
Sliwa, W [1 ]
机构
[1] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
non-archimedean; Frechet spaces; homeomorphisms;
D O I
10.1023/B:CMAJ.0000042384.21869.5d
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any infinite-dimensional non-archimedean Frechet space E is homeomorphic to D-N where D is a discrete space with card(D) = dens(E). It follows that infinite-dimensional non-archimedean Frechet spaces E and F are homeomorphic if and only if dens(E) = dens(F). In particular, any infinite-dimensional non-archimedean Frechet space of countable type over a field K is homeomorphic to the non-archimedean Frechet space K-N.
引用
收藏
页码:457 / 463
页数:7
相关论文
共 50 条
[31]   A directional distance function approach to void the non-Archimedean in DEA [J].
Faere, Rolf ;
Charles, Vincent .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2018, 69 (05) :772-775
[32]   Topological structure of solution sets to differential problems in Frechet spaces [J].
Bakowska, A. ;
Gabor, G. .
ANNALES POLONICI MATHEMATICI, 2009, 95 (01) :17-36
[33]   A Fixed Point Approach to Stability of k-th Radical Functional Equation in Non-Archimedean (n, β)-Banach Spaces [J].
EL-Fassi, Iz-iddine ;
Elqorachi, Elhoucien ;
Khodaei, Hamid .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (02) :487-504
[34]   Non-quasianalytic curves in Frechet spaces [J].
Juan-Huguet, Jordi .
MONATSHEFTE FUR MATHEMATIK, 2011, 164 (04) :427-437
[35]   On non-primary Frechet Schwartz spaces [J].
Diaz, JC .
STUDIA MATHEMATICA, 1997, 126 (03) :291-307
[36]   On the General Structure of Unique Range Sets over a Non-Archimedean Field [J].
Mallick, Sanjay .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2025,
[37]   Existence of GCD's and Factorization in Rings of non-Archimedean Entire Functions [J].
Cherry, William .
ADVANCES IN NON-ARCHIMEDEAN ANALYSIS, 2011, 551 :57-69
[38]   On the Extended Class of SUPM and Their Generating URSM Over Non-Archimedean Field [J].
Banerjee, Abhijit ;
Maity, Sayantan .
P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2021, 13 (03) :175-185
[39]   On the Extended Class of SUPM and Their Generating URSM Over Non-Archimedean Field [J].
Abhijit Banerjee ;
Sayantan Maity .
p-Adic Numbers, Ultrametric Analysis and Applications, 2021, 13 :175-185
[40]   Directed partial orders over non-archimedean o-fields [J].
Zhipeng Xu ;
Yuehui Zhang .
Positivity, 2020, 24 :1279-1291