N Two different mechanisms of CH3NH3PbI3 film formation in one-step deposition and its effect on photovoltaic properties of OPV-type perovskite solar cells

被引:74
作者
Bae, Seunghwan [1 ]
Han, Seung Jin [1 ]
Shin, Tae Joo [2 ,3 ]
Jo, Won Ho [1 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
[2] Ulsan Natl Inst Sci & Technol, Cent Res Facil, Ulsan 689798, South Korea
[3] Ulsan Natl Inst Sci & Technol, Sch Nat Sci, Ulsan 689798, South Korea
关键词
HALIDE PEROVSKITES; HYSTERESIS; EFFICIENCY; ELECTRON; CRYSTALLIZATION; EXCITONS; LENGTHS;
D O I
10.1039/c5ta06870c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although the one-step deposition method has intensively been studied because of the simple and easy fabrication of perovskite films, uncontrolled crystallization of perovskite during one-step deposition often results in films with small crystallites and low surface coverage, leading to low photovoltaic performance. In this study, we have proposed the optimum processing conditions to afford a favorable crystal morphology of perovskite films for achieving high power conversion efficiency of perovskite solar cells. Two different morphologies, tree-like and flower-like morphologies, are developed depending upon the spin-coating time and post-heat treatment temperature. When the perovskite is crystallized from the liquid film after a short spin-coating time, the flower-like morphology is developed, whereas the treelike morphology is developed when the perovskite is crystallized for a long spin-coating time. When the morphology evolution is monitored using in situ optical microscopy and X-ray diffraction to investigate the origin of the difference between tree-like and flower-like morphologies, it reveals that the CH3NH3I-PbI2-solvent complex is formed to develop the tree-like morphology before CH3NH3PbI3 crystals are formed, whereas the flower-like morphology is developed when the CH3NH3PbI3 crystals are formed directly from the liquid film without the formation of the CH3NH3I-PbI2-solvent complex. The film with a flower-like morphology, as prepared from DMSO solution, has large-sized crystallites, and the crystallites are highly orientated along (112) and (200) directions, resulting in a high PCE of 13.85%, whereas the film with a tree-like morphology has small-sized crystallites with random crystal orientation, exhibiting very low PCEs.
引用
收藏
页码:23964 / 23972
页数:9
相关论文
共 33 条
[1]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[2]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[3]   One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive [J].
Chen, Chun-Chao ;
Hong, Zirou ;
Li, Gang ;
Chen, Qi ;
Zhou, Huanping ;
Yang, Yang .
JOURNAL OF PHOTONICS FOR ENERGY, 2015, 5
[4]   The roles of alkyl halide additives in enhancing perovskite solar cell performance [J].
Chueh, Chu-Chen ;
Liao, Chien-Yi ;
Zuo, Fan ;
Williams, Spencer T. ;
Liang, Po-Wei ;
Jen, Alex K-Y .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (17) :9058-9062
[5]   Excitons versus free charges in organo-lead tri-halide perovskites [J].
D'Innocenzo, Valerio ;
Grancini, Giulia ;
Alcocer, Marcelo J. P. ;
Kandada, Ajay Ram Srimath ;
Stranks, Samuel D. ;
Lee, Michael M. ;
Lanzani, Guglielmo ;
Snaith, Henry J. ;
Petrozza, Annamaria .
NATURE COMMUNICATIONS, 2014, 5
[6]   Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor) [J].
Edri, Eran ;
Kirmayer, Saar ;
Henning, Alex ;
Mukhopadhyay, Sabyasachi ;
Gartsman, Konstantin ;
Rosenwaks, Yossi ;
Hodes, Gary ;
Cahen, David .
NANO LETTERS, 2014, 14 (02) :1000-1004
[7]   Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells [J].
Eperon, Giles E. ;
Burlakov, Victor M. ;
Docampo, Pablo ;
Goriely, Alain ;
Snaith, Henry J. .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (01) :151-157
[8]   Lead-free solid-state organic-inorganic halide perovskite solar cells [J].
Hao, Feng ;
Stoumpos, Constantinos C. ;
Duyen Hanh Cao ;
Chang, Robert P. H. ;
Kanatzidis, Mercouri G. .
NATURE PHOTONICS, 2014, 8 (06) :489-494
[9]   Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin-Coating Process [J].
Heo, Jin Hyuck ;
Song, Dae Ho ;
Im, Sang Hyuk .
ADVANCED MATERIALS, 2014, 26 (48) :8179-8183
[10]   MAGNETOABSORPTION OF THE LOWEST EXCITON IN PEROVSKITE-TYPE COMPOUND (CH3NH3)PBI3 [J].
HIRASAWA, M ;
ISHIHARA, T ;
GOTO, T ;
UCHIDA, K ;
MIURA, N .
PHYSICA B, 1994, 201 :427-430