Enhancement of Photocurrent by Integration of an Artificial Light-Harvesting Antenna with a Photosystem I Photovoltaic Device

被引:22
作者
Takekuma, Yuya [1 ,2 ]
Nagakawa, Haruki [1 ,2 ]
Noji, Tomoyasu [3 ,5 ]
Kawakami, Keisuke [3 ,6 ]
Furukawa, Rei [4 ]
Nango, Mamoru [3 ]
Kamiya, Nobuo [3 ]
Nagata, Morio [1 ]
机构
[1] Tokyo Univ Sci, Grad Sch Engn, Dept Ind Chem, Shinjuku Ku, 12-1 Ichigaya Funagawara, Tokyo 1620826, Japan
[2] Kanagawa Inst Ind Sci & Technol KISTEC, Photocatalyst Grp, Local Independent Adm Agcy, Takatsu Ku, 407 East Wing,Innovat Ctr Bldg,KSP,3-2-1 Sakado, Kawasaki, Kanagawa 2130012, Japan
[3] Osaka City Univ, OCU Adv Res Inst Nat Sci & Technol OCARINA, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[4] Univ Electrocommun, Chofugaoka 1-5-1, Chofu, Tokyo 1828585, Japan
[5] Univ Tokyo, Res Ctr Adv Sci & Technol, Meguro Ku, 4-6-1 Komaba, Tokyo 1538904, Japan
[6] Osaka City Univ, Res Ctr Artificial Photosynth ReCAP, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
基金
日本学术振兴会;
关键词
photosystem I; biophotovoltaics; dye-sensitized solar cells; artificial antenna; FRET; PHOTOSYNTHETIC REACTION-CENTER; SENSITIZED SOLAR-CELLS; IMMOBILIZATION; EFFICIENCY; TITANIA; TIO2;
D O I
10.1021/acsaem.9b00349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photosynthetic pigment-protein-based biophotovoltaic devices are attracting interest as environmentally friendly energy sources. Photosystem I (PSI), a photosynthetic pigment-protein, is a proven biophotovoltaic material because of its abundance and high charge separation quantum efficiency. However, the photocurrent of these biophotovoltaic devices is not high because of their low spectral response. We have integrated an artificial light-harvesting antenna into a PSI-based biophotovoltaic device to expand the spectral response. To fabricate the device, a perylene di-imide derivative (PTCDI) was introduced onto a TiO2 surface as an artificial antenna. In the photovoltaic cells formed by the PTCDI/PSI-assembled TiO2 electrode, the magnitude of the incident photon-to-current conversion efficiency spectrum was significantly enhanced in the range 450-750 nm, and the photocurrent increased to 0.47 mA/cm(2). The result indicates that the photons absorbed by PTCDI transfer to PSI via Forster resonance energy transfer.
引用
收藏
页码:3986 / 3990
页数:9
相关论文
共 30 条
[1]   Enhancing Photocurrent Generation in Photosynthetic Reaction Center-Based Photoelectrochemical Cells with Biomimetic DNA Antenna [J].
Carey, Anne-Marie ;
Zhang, HaoJie ;
Liu, Minghui ;
Sharaf, Daiana ;
Akram, Natalie ;
Yan, Hao ;
Lin, Su ;
Woodbury, Neal W. ;
Seo, Dong-Kyun .
CHEMSUSCHEM, 2017, 10 (22) :4457-4460
[2]   Photoluminescence and conductivity of self-assembled π-π stacks of perylene bisimide dyes [J].
Chen, Zhijian ;
Stepanenko, Vladimir ;
Dehm, Volker ;
Prins, Paulette ;
Siebbeles, Laurens D. A. ;
Seibt, Joachim ;
Marquetand, Philipp ;
Engel, Volker ;
Wuerthner, Frank .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (02) :436-449
[3]   Photosystem I-polyaniline/TiO2 solid-state solar cells: simple devices for biohybrid solar energy conversion [J].
Gizzie, Evan A. ;
Niezgoda, J. Scott ;
Robinson, Maxwell T. ;
Harris, Andrew G. ;
Jennings, G. Kane ;
Rosenthal, Sandra J. ;
Cliffel, David E. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (12) :3572-3576
[4]   Porphyrin-Sensitized Solar Cells: Effect of Carboxyl Anchor Group Orientation on the Cell Performance [J].
Hart, Aaron S. ;
Chandra, B. K. C. ;
Gobeze, Habtom B. ;
Sequeira, Lindsey R. ;
D'Souza, Francis .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (11) :5314-5323
[5]   Synthetic Antenna Functioning As Light Harvester in the Whole Visible Region for Enhanced Hybrid Photosynthetic Reaction Centers [J].
Hassan Omar, Omar ;
la Gatta, Simona ;
Tangorra, Rocco Roberto ;
Milano, Francesco ;
Ragni, Roberta ;
Operamolla, Alessandra ;
Argazzi, Roberto ;
Chiorboi, Claudio ;
Agostiano, Angela ;
Trotta, Massimo ;
Farinola, Gianluca M. .
BIOCONJUGATE CHEMISTRY, 2016, 27 (07) :1614-1623
[6]   Photosynthetic Quantum Yield Dynamics: From Photosystems to Leaves [J].
Hogewoning, Sander W. ;
Wientjes, Emilie ;
Douwstra, Peter ;
Trouwborst, Govert ;
van Ieperen, Wim ;
Croce, Roberta ;
Harbinson, Jeremy .
PLANT CELL, 2012, 24 (05) :1921-1935
[7]   Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution [J].
Jordan, P ;
Fromme, P ;
Witt, HT ;
Klukas, O ;
Saenger, W ;
Krauss, N .
NATURE, 2001, 411 (6840) :909-917
[8]   Location of PsbY in oxygen-evolving photosystem II revealed by mutagenesis and X-ray crystallography [J].
Kawakami, Keisuke ;
Iwai, Masako ;
Ikeuchi, Masahiko ;
Kamiya, Nobuo ;
Shen, Jian-Ren .
FEBS LETTERS, 2007, 581 (25) :4983-4987
[9]   Immobilization of photosystem I or II complexes on electrodes for preparation of photoenergy-conversion devices [J].
Kondo, Masaharu ;
Amano, Mizuki ;
Joke, Takashi ;
Ishigure, Shuichi ;
Noji, Tomoyasu ;
Dewa, Takehisa ;
Amao, Yutaka ;
Nango, Mamoru .
RESEARCH ON CHEMICAL INTERMEDIATES, 2014, 40 (09) :3287-3293
[10]   Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films [J].
Mann, Jonathan R. ;
Gannon, Michael K. ;
Fitzgibbons, Thomas C. ;
Detty, Michael R. ;
Watson, David F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (34) :13057-13061