Sensitivity analysis of cardiac electrophysiological models using polynomial chaos

被引:4
|
作者
Geneser, Sarah E. [1 ]
Kirby, Robert M. [1 ]
Sachse, Frank B. [1 ]
机构
[1] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA
关键词
polynomial chaos; stochastic processes; sensitivity quantification; biological computational modeling; cardiac electrophysiology;
D O I
10.1109/IEMBS.2005.1615349
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Mathematical models of biophysical phenomena have proven useful in the reconstruction of experimental data and prediction of biological behavior. By quantifying the sensitivity of a model to certain parameters, one can place an appropriate amount of emphasis in the accuracy with which those parameters are determined. In addition, investigation of stochastic parameters can lead to a greater understanding of the behavior captured by the model. This can lead to possible model reductions, or point out shortcomings to be addressed. We present polynomial chaos as a computationally efficient alternative to Monte Carlo for assessing the impact of stochastically distributed parameters on the model predictions of several cardiac electrophysiological models.
引用
收藏
页码:4042 / 4045
页数:4
相关论文
共 50 条
  • [41] Global sensitivity analysis using polynomial chaos expansion enhanced Gaussian process regression method
    Shang, Xiaobing
    Zhang, Zhi
    Fang, Hai
    Jiang, Lichao
    Wang, Lipeng
    ENGINEERING WITH COMPUTERS, 2024, 40 (02) : 1231 - 1246
  • [42] Reactive Transport Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial Chaos Expansion
    N. Fajraoui
    T. A. Mara
    A. Younes
    R. Bouhlila
    Water, Air, & Soil Pollution, 2012, 223 : 4183 - 4197
  • [43] Fast and Accurate Sensitivity Analysis of Random and Systematic Errors Using Polynomial Chaos Expansion in IMPT
    Hoogeman, M. S.
    van de Water, S.
    van der Voort, S.
    Perko, Z.
    Heijmen, B.
    Lathouwers, D.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 93 (03): : S149 - S149
  • [44] Reactive Transport Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial Chaos Expansion
    Fajraoui, N.
    Mara, T. A.
    Younes, A.
    Bouhlila, R.
    WATER AIR AND SOIL POLLUTION, 2012, 223 (07): : 4183 - 4197
  • [45] Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis
    Perko, Zoltan
    Gilli, Luca
    Lathouwers, Danny
    Kloosterman, Jan Leen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 260 : 54 - 84
  • [46] Efficient Regression-Based Polynomial Chaos using Adjoint Sensitivity
    Sidhu, Karanvir S.
    Kassis, Marco T.
    Khazaka, Roni
    2019 IEEE 28TH CONFERENCE ON ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS (EPEPS 2019), 2019,
  • [47] Global sensitivity analysis: A Bayesian learning based polynomial chaos approach
    Bhattacharyya, Biswarup
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 415
  • [48] Nonintrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic Differential Equations
    Jimenez, M. Navarro
    Le Maitre, O. P.
    Knio, O. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 378 - 402
  • [49] On distribution-based global sensitivity analysis by polynomial chaos expansion
    Novak, Lukas
    COMPUTERS & STRUCTURES, 2022, 267
  • [50] DISTRIBUTION-BASED GLOBAL SENSITIVITY ANALYSIS BY POLYNOMIAL CHAOS EXPANSION
    Novak, L.
    Novak, D.
    ENGINEERING MECHANICS 2020 (IM2020), 2020, : 380 - 383