A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN

被引:132
作者
Yu, Yang-Xin [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Lab Chem Engn Thermodynam, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
CATHODE MATERIAL; ENERGY-STORAGE; LITHIUM; MOLECULES; APPROXIMATION; PERFORMANCE;
D O I
10.1039/c4ta00103f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
9,10-Anthraquinone (AQ) and its derivatives, i.e., benzofuro[5,6-b] furan-4,8-dione (BFFD), benzo[1,2-b: 4,5-b'] dithiophene-4,8-dione (BDTD) and pyrido[3,4-g] isoquinoline-5,10-dione (PID), are environmentally friendly and cheap electrode materials. However, their significant solubility in electrolyte solutions limits the cycle performance of lithium-ion batteries. In this work a comparative investigation of these four organic molecules adsorbed on monolayer graphene and hexagonal boron nitride (h-BN) has been carried out using van der Waals (vdW) dispersion-corrected density-functional theory (DFT). The calculated results indicate that the vdW dispersion contributes to more than 80% of the total attractive interaction for all the complexes studied. The binding energies range from 1.06 to 1.31 eV, showing strong physisorption. The calculated binding energies of the four organic molecules are in the order: BFFD < BDTD < AQ < PID on monolayer graphene and BFFD < BDTD < PID < AQ on monolayer h-BN. The physisorption causes a work function shift relative to the isolated graphene or h-BN nanosheet in the order: AQ < BDTD < BFFD < PID on both the graphene and h-BN nanosheets. This sequence is dominated by the work functions of the four organic molecules. The strong physisorption suggests that the solubility of the four organic compounds in the electrolyte solutions can be reduced by binding them to a graphene or h-BN nanosheet, making the organic compound-graphene or organic compound-h-BN composite a promising electrode material for lithium-ion batteries.
引用
收藏
页码:8910 / 8917
页数:8
相关论文
共 44 条
[1]   Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules [J].
Antony, Jens ;
Grimme, Stefan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (45) :5287-5293
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   A MULTICENTER NUMERICAL-INTEGRATION SCHEME FOR POLYATOMIC-MOLECULES [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (04) :2547-2553
[4]   A NEW MIXING OF HARTREE-FOCK AND LOCAL DENSITY-FUNCTIONAL THEORIES [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02) :1372-1377
[5]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[6]   Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes [J].
Bhattacharya, Jishnu ;
Wolverton, C. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (17) :6486-6498
[7]   Band Gap Tuning of Graphene by Adsorption of Aromatic Molecules [J].
Chang, Chung-Huai ;
Fan, Xiaofeng ;
Li, Lain-Jong ;
Kuo, Jer-Lai .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (25) :13788-13794
[8]   Review graphite [J].
Chung, DDL .
JOURNAL OF MATERIALS SCIENCE, 2002, 37 (08) :1475-1489
[9]   Fast calculation of electrostatics in crystals and large molecules [J].
Delley, B .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (15) :6107-6110
[10]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764