共 50 条
Room Temperature Quantum Emission from Cubic Silicon Carbide Nanoparticles
被引:90
|作者:
Castelletto, Stefania
[1
]
Johnson, Brett C.
[2
]
Zachreson, Cameron
[3
]
Beke, David
[4
]
Balogh, Istvan
[4
]
Ohshima, Takeshi
[5
]
Aharonovich, Igor
[3
]
Gali, Adam
[4
,6
]
机构:
[1] RMIT Univ, Sch Aerosp Mech & Mfg Engn, Melbourne, Vic 3000, Australia
[2] Univ Melbourne, Sch Phys, Ctr Quantum Computat & Commun Technol, Melbourne, Vic 3010, Australia
[3] Univ Technol Sydney, Sch Phys & Adv Mat, Ultimo, NSW 2007, Australia
[4] Hungarian Acad Sci, Wigner Res Ctr Phys, Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[5] Japan Atom Energy Agcy, SemiConductor Anal & Radiat Effects Grp, Takasaki, Gunma 3701292, Japan
[6] Univ Technol & Econ, Dept Atom Phys, H-1111 Budapest, Hungary
来源:
基金:
澳大利亚研究理事会;
关键词:
silicon carbide;
nanoparticles;
single photon emission;
quantum characterization;
intrinsic defects in silicon carbide;
SPIN QUBITS;
CENTERS;
STATE;
PHOTOLUMINESCENCE;
NANOCRYSTALS;
DEFECTS;
VACANCY;
D O I:
10.1021/nn502719y
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The photoluminescence (PL) arising from silicon carbide nanoparticles has so far been associated with the quantum confinement effect or to radiative transitions between electronically active surface states. In this work we show that cubic phase silicon carbide nanoparticles with diameters in the range 45-500 nm can host other point defects responsible for photoinduced intrabandgap PL We demonstrate that these nanoparticles exhibit single photon emission at room temperature with record saturation count rates of 7 x 10(6) counts/s. The realization of nonclassical emission from SiC nanoparticles extends their potential use from fluorescence biomarker beads to optically active quantum elements for next generation quantum sensing and nanophotonics. The single photon emission is related to single isolated SiC defects that give rise to states within the bandgap.
引用
收藏
页码:7938 / 7947
页数:10
相关论文