Nontrivial Solutions for Asymmetric Kirchhoff Type Problems
被引:1
|
作者:
Pei, Ruichang
论文数: 0引用数: 0
h-index: 0
机构:
Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R ChinaTianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
Pei, Ruichang
[1
]
Zhang, Jihui
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Inst Math, Sch Math & Comp Sci, Nanjing 210097, Jiangsu, Peoples R ChinaTianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
Zhang, Jihui
[2
]
机构:
[1] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Sch Math & Comp Sci, Nanjing 210097, Jiangsu, Peoples R China
We consider a class of particular Kirchhoff type problems with a right-hand side nonlinearity which exhibits an asymmetric growth at +infinity and -infinity in R-N (N = 2,3). Namely, it is 4-linear at -infinity and 4-superlinear at +infinity. However, it need not satisfy the Ambrosetti-Rabinowitz condition on the positive semiaxis. Some existence results for nontrivial solution are established by combining Mountain Pass Theorem and a variant version of Mountain Pass Theorem with Moser-Trudinger inequality.
机构:
Qujing Normal Univ, Dept Math & Informat Sci, Qujing 655011, Yunnan, Peoples R ChinaQujing Normal Univ, Dept Math & Informat Sci, Qujing 655011, Yunnan, Peoples R China
Cheng, Bitao
Wu, Xian
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R ChinaQujing Normal Univ, Dept Math & Informat Sci, Qujing 655011, Yunnan, Peoples R China
Wu, Xian
Liu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Qujing Normal Univ, Dept Math & Informat Sci, Qujing 655011, Yunnan, Peoples R ChinaQujing Normal Univ, Dept Math & Informat Sci, Qujing 655011, Yunnan, Peoples R China