Bone texture analysis for prediction of incident radiographic hip osteoarthritis using machine learning: data from the Cohort Hip and Cohort Knee (CHECK) study

被引:32
|
作者
Hirvasniemi, J. [1 ,2 ]
Gielis, W. P. [2 ]
Arbabi, S. [3 ]
Agricola, R. [4 ]
van Spil, W. E. [5 ]
Arbabi, V. [2 ,6 ,7 ]
Weinans, H. [2 ,6 ]
机构
[1] Univ Oulu, Fac Informat Technol & Elect Engn, Ctr Machine Vis & Signal Anal, POB 4500, FI-90014 Oulu, Finland
[2] Univ Med Ctr Utrecht, Dept Orthoped, Utrecht, Netherlands
[3] Univ Zabol, Dept Comp Engn, Fac Engn, Zabol, Iran
[4] Erasmus MC, Dept Orthopaed, Rotterdam, Netherlands
[5] Univ Med Ctr Utrecht, Dept Rheumatol & Clin Immunol, Utrecht, Netherlands
[6] Delft Univ Technol, Dept Biomech Engn, Delft, Netherlands
[7] Univ Birjand, Dept Mech Engn, Fac Engn, Birjand, Iran
基金
芬兰科学院;
关键词
Radiography; Hip osteoarthritis; Prediction; Bone texture; Machine learning; FEMORAL-NECK FRACTURE; TRABECULAR BONE; 3-DIMENSIONAL MICROARCHITECTURE; PLAIN RADIOGRAPHS; MINERAL DENSITY; RISK; SIGNATURE; MODELS; MACRORADIOGRAPHS; REGULARIZATION;
D O I
10.1016/j.joca.2019.02.796
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objective: To assess the ability of radiography-based bone texture variables in proximal femur and acetabulum to predict incident radiographic hip osteoarthritis (rHOA) over a 10 years period. Design: Pelvic radiographs from CHECK at baseline (987 hips) were analyzed for bone texture using fractal signature analysis (FSA) in proximal femur and acetabulum. Elastic net (machine learning) was used to predict the incidence of rHOA (including Kellgren-Lawrence grade (KL) >= 2 or total hip replacement (THR)), joint space narrowing score (JSN, range 0-3), and osteophyte score (OST, range 0-3) after 10 years. Performance of prediction models was assessed using the area under the receiver operating characteristic curve (ROC AUC). Results: Of the 987 hips without rHOA at baseline, 435 (44%) had rHOA at 10-year follow-up. Of the 667 hips with JSN grade 0 at baseline, 471 (71%) had JSN grade >= 1 at 10-year follow-up. Of the 613 hips with OST grade 0 at baseline, 526 (86%) had OST grade >= 1 at 10-year follow-up. AUCs for the models including age, gender, and body mass index (BMI) to predict incident rHOA, JSN, and OST were 0.59, 0.54, and 0.51, respectively. The inclusion of bone texture variables in the models improved the prediction of incident rHOA (ROC AUC 0.68 and 0.71 when baseline KL was also included in the model) and JSN (ROC AUC 0.62), but not incident OST (ROC AUC 0.52). Conclusion: Bone texture analysis provides additional information for predicting incident rHOA or THR over 10 years. (C) 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:906 / 914
页数:9
相关论文
共 50 条
  • [31] Diagnosis of early stage knee osteoarthritis based on early clinical course: data from the CHECK cohort
    Wang, Qiuke
    Runhaar, Jos
    Kloppenburg, Margreet
    Boers, Maarten
    Bijlsma, Johannes W. J.
    Bierma-Zeinstra, Sita M. A.
    ARTHRITIS RESEARCH & THERAPY, 2021, 23 (01)
  • [32] Development of machine learning models for the detection of surgical site infections following total hip and knee arthroplasty: a multicenter cohort study
    Guosong Wu
    Cheligeer Cheligeer
    Danielle A. Southern
    Elliot A. Martin
    Yuan Xu
    Jenine Leal
    Jennifer Ellison
    Kathryn Bush
    Tyler Williamson
    Hude Quan
    Cathy A. Eastwood
    Antimicrobial Resistance & Infection Control, 12
  • [33] Development of machine learning models for the detection of surgical site infections following total hip and knee arthroplasty: a multicenter cohort study
    Wu, Guosong
    Cheligeer, Cheligeer
    Southern, Danielle A.
    Martin, Elliot A.
    Xu, Yuan
    Leal, Jenine
    Ellison, Jennifer
    Bush, Kathryn
    Williamson, Tyler
    Quan, Hude
    Eastwood, Cathy A.
    ANTIMICROBIAL RESISTANCE AND INFECTION CONTROL, 2023, 12 (01)
  • [34] Do persons with asymmetric hip pain or radiographic hip OA have worse pain and structure outcomes in the knee opposite the more affected hip? Data from the Osteoarthritis Initiative
    Joseph, G. B.
    Hilton, J. F.
    Jungmann, P. M.
    Lynch, J. A.
    Lane, N. E.
    Liu, F.
    McCulloch, C. E.
    Tolstykh, I.
    Link, T. M.
    Nevitt, M. C.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 (03) : 427 - 435
  • [35] App-Based Feedback for Rehabilitation Exercise Correction in Patients With Knee or Hip Osteoarthritis: Prospective Cohort Study
    Biebl, Johanna Theresia
    Rykala, Marzena
    Strobel, Maximilian
    Bollinger, Pawandeep Kaur
    Ulm, Bernhard
    Kraft, Eduard
    Huber, Stephan
    Lorenz, Andreas
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (07)
  • [36] Systemic biochemical markers of joint metabolism and inflammation in relation to radiographic parameters and pain of the knee: data from CHECK, a cohort of early-osteoarthritis subjects
    Van Spil, W. E.
    Nair, S. C.
    Kinds, M. B.
    Emans, P. J.
    Hilberdink, W. K. H. A.
    Welsing, P. M. J.
    Lafeber, F. P. J. G.
    OSTEOARTHRITIS AND CARTILAGE, 2015, 23 (01) : 48 - 56
  • [37] The longitudinal relationship between hand, hip and knee osteoarthritis and cardiovascular events: a population-based cohort study
    Kendzerska, T.
    Juni, P.
    King, L. K.
    Croxford, R.
    Stanaitis, I.
    Hawker, G. A.
    OSTEOARTHRITIS AND CARTILAGE, 2017, 25 (11) : 1771 - 1780
  • [38] Prediction of spontaneous preterm birth using supervised machine learning on metabolomic data: A case-cohort study
    Al Ghadban, Yasmina
    Du, Yuheng
    Charnock-Jones, D. Stephen
    Garmire, Lana X.
    Smith, Gordon C. S.
    Sovio, Ulla
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2024, 131 (07) : 908 - 916
  • [39] High bone mass and cam morphology are independently related to hip osteoarthritis: findings from the High Bone Mass cohort
    Zucker, B. E.
    Ebsim, R.
    Lindner, C.
    Hardcastle, S.
    Cootes, T.
    Tobias, J. H.
    Whitehouse, M. R.
    Gregson, C. L.
    Faber, B. G.
    Hartley, A. E.
    BMC MUSCULOSKELETAL DISORDERS, 2022, 23 (01)
  • [40] Prediction of Maternal Hemorrhage Using Machine Learning: Retrospective Cohort Study
    Westcott, Jill M.
    Hughes, Francine
    Liu, Wenke
    Grivainis, Mark
    Hoskins, Iffath
    Fenyo, David
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (07)