Bone texture analysis for prediction of incident radiographic hip osteoarthritis using machine learning: data from the Cohort Hip and Cohort Knee (CHECK) study

被引:32
|
作者
Hirvasniemi, J. [1 ,2 ]
Gielis, W. P. [2 ]
Arbabi, S. [3 ]
Agricola, R. [4 ]
van Spil, W. E. [5 ]
Arbabi, V. [2 ,6 ,7 ]
Weinans, H. [2 ,6 ]
机构
[1] Univ Oulu, Fac Informat Technol & Elect Engn, Ctr Machine Vis & Signal Anal, POB 4500, FI-90014 Oulu, Finland
[2] Univ Med Ctr Utrecht, Dept Orthoped, Utrecht, Netherlands
[3] Univ Zabol, Dept Comp Engn, Fac Engn, Zabol, Iran
[4] Erasmus MC, Dept Orthopaed, Rotterdam, Netherlands
[5] Univ Med Ctr Utrecht, Dept Rheumatol & Clin Immunol, Utrecht, Netherlands
[6] Delft Univ Technol, Dept Biomech Engn, Delft, Netherlands
[7] Univ Birjand, Dept Mech Engn, Fac Engn, Birjand, Iran
基金
芬兰科学院;
关键词
Radiography; Hip osteoarthritis; Prediction; Bone texture; Machine learning; FEMORAL-NECK FRACTURE; TRABECULAR BONE; 3-DIMENSIONAL MICROARCHITECTURE; PLAIN RADIOGRAPHS; MINERAL DENSITY; RISK; SIGNATURE; MODELS; MACRORADIOGRAPHS; REGULARIZATION;
D O I
10.1016/j.joca.2019.02.796
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objective: To assess the ability of radiography-based bone texture variables in proximal femur and acetabulum to predict incident radiographic hip osteoarthritis (rHOA) over a 10 years period. Design: Pelvic radiographs from CHECK at baseline (987 hips) were analyzed for bone texture using fractal signature analysis (FSA) in proximal femur and acetabulum. Elastic net (machine learning) was used to predict the incidence of rHOA (including Kellgren-Lawrence grade (KL) >= 2 or total hip replacement (THR)), joint space narrowing score (JSN, range 0-3), and osteophyte score (OST, range 0-3) after 10 years. Performance of prediction models was assessed using the area under the receiver operating characteristic curve (ROC AUC). Results: Of the 987 hips without rHOA at baseline, 435 (44%) had rHOA at 10-year follow-up. Of the 667 hips with JSN grade 0 at baseline, 471 (71%) had JSN grade >= 1 at 10-year follow-up. Of the 613 hips with OST grade 0 at baseline, 526 (86%) had OST grade >= 1 at 10-year follow-up. AUCs for the models including age, gender, and body mass index (BMI) to predict incident rHOA, JSN, and OST were 0.59, 0.54, and 0.51, respectively. The inclusion of bone texture variables in the models improved the prediction of incident rHOA (ROC AUC 0.68 and 0.71 when baseline KL was also included in the model) and JSN (ROC AUC 0.62), but not incident OST (ROC AUC 0.52). Conclusion: Bone texture analysis provides additional information for predicting incident rHOA or THR over 10 years. (C) 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:906 / 914
页数:9
相关论文
共 50 条
  • [21] Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: data from the Osteoarthritis Initiative
    Janvier, T.
    Jennane, R.
    Toumi, H.
    Lespessailles, E.
    OSTEOARTHRITIS AND CARTILAGE, 2017, 25 (12) : 2047 - 2054
  • [22] Associations Between Baseline and Longitudinal Semiautomated Quantitative Joint Space Width at the Hip and Incident Hip Osteoarthritis: Data From a Community-Based Cohort
    Nelson, Amanda E.
    Smith, Jacquelyn A.
    Alvarez, Carolina
    Arbeeva, Liubov
    Renner, Jordan B.
    Murphy, Louise B.
    Jordan, Joanne M.
    Golightly, Yvonne M.
    Duryea, Jeffrey
    ARTHRITIS CARE & RESEARCH, 2022, 74 (12) : 1978 - 1988
  • [23] Leveraging machine learning for duration of surgery prediction in knee and hip arthroplasty - a development and validation study
    Langenberger, Benedikt
    Schrednitzki, Daniel
    Halder, Andreas
    Busse, Reinhard
    Pross, Christoph
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2025, 25 (01)
  • [24] The association between statistical shape modeling-defined hip morphology and features of early hip osteoarthritis in young adult football players: Data from the femoroacetabular impingement and hip osteoarthritis cohort (FORCe) study
    van Buuren, M. M. A.
    Heerey, J. J.
    Smith, A.
    Crossley, K. M.
    Kemp, J. L.
    Scholes, M. J.
    Lawrenson, P. R.
    King, M. G.
    Gielis, W. P.
    Weinans, H.
    Lindner, C.
    Souza, R. B.
    Verhaar, J. A. N.
    Agricola, R.
    OSTEOARTHRITIS AND CARTILAGE OPEN, 2022, 4 (03):
  • [25] Evaluation of separate quantitative radiographic features adds to the prediction of incident radiographic osteoarthritis in individuals with recent onset of knee pain: 5-year follow-up in the CHECK cohort
    Kinds, M. B.
    Marijnissen, A. C. A.
    Vincken, K. L.
    Viergever, M. A.
    Drossaers-Bakker, K. W.
    Bijlsma, J. W. J.
    Bierma-Zeinstra, S. M. A.
    Welsing, P. M. J.
    Lafeber, F. P. J. G.
    OSTEOARTHRITIS AND CARTILAGE, 2012, 20 (06) : 548 - 556
  • [26] Proteomic prediction of diverse incident diseases: a machine learning-guided biomarker discovery study using data from a prospective cohort study
    Carrasco-Zanini, Julia
    Pietzner, Maik
    Koprulu, Mine
    Wheeler, Eleanor
    Kerrison, Nicola
    Wareham, Nicholas J.
    Langenberg, Claudia
    LANCET DIGITAL HEALTH, 2024, 6 (07): : e470 - e479
  • [27] The KNee OsteoArthritis Prediction (KNOAP2020) challenge: An image analysis challenge to predict incident symptomatic radiographic knee osteoarthritis from MRI and X-ray images
    Hirvasniemi, J.
    Runhaar, J.
    van der Heijden, R. A.
    Zokaeinikoo, M.
    Yang, M.
    Li, X.
    Tan, J.
    Rajamohan, H. R.
    Zhou, Y.
    Deniz, C. M.
    Caliva, F.
    Iriondo, C.
    Lee, J. J.
    Liu, F.
    Martinez, A. M.
    Namiri, N.
    Pedoia, V
    Panfilov, E.
    Bayramoglu, N.
    Nguyen, H. H.
    Nieminen, M. T.
    Saarakkala, S.
    Tiulpin, A.
    Lin, E.
    Li, A.
    Li, V
    Dam, E. B.
    Chaudhari, A. S.
    Kijowski, R.
    Bierma-Zeinstra, S.
    Oei, E. H. G.
    Klein, S.
    OSTEOARTHRITIS AND CARTILAGE, 2023, 31 (01) : 115 - 125
  • [28] Subclinical deformities of the hip are significant predictors of radiographic osteoarthritis and joint replacement in women. A 20 year longitudinal cohort study
    Thomas, G. E. R.
    Palmer, A. J. R.
    Batra, R. N.
    Kiran, A.
    Hart, D.
    Spector, T.
    Javaid, M. K.
    Judge, A.
    Murray, D. W.
    Carr, A. J.
    Arden, N. K.
    Glyn-Jones, S.
    OSTEOARTHRITIS AND CARTILAGE, 2014, 22 (10) : 1504 - 1510
  • [29] Knee and hip osteoarthritis and risk of nine cancers in a large real-world matched cohort study
    Turkiewicz, Aleksandra
    Diaz, Yesika
    Duarte-Salles, Talita
    Prieto-Alhambra, Daniel
    RHEUMATOLOGY, 2022, 61 (06) : 2325 - 2334
  • [30] Machine learning to predict incident radiographic knee osteoarthritis over 8 Years using combined MR imaging features, demographics, and clinical factors: data from the Osteoarthritis Initiative
    Joseph, G. B.
    McCulloch, C. E.
    Nevitt, M. C.
    Link, T. M.
    Sohn, J. H.
    OSTEOARTHRITIS AND CARTILAGE, 2022, 30 (02) : 270 - 279