On the numerical range of some weighted shift matrices and operators

被引:9
|
作者
Vandanjav, Adiyasuren [1 ]
Undrakh, Batzorig [2 ]
机构
[1] Natl Univ Mongolia, Dept Math, Ulaanbaatar, Mongolia
[2] Natl Univ Mongolia, Inst Math, Ulaanbaatar, Mongolia
关键词
Numerical range; Numerical radius; Weighted shift operators; RADIUS;
D O I
10.1016/j.laa.2014.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we compute and compare the numerical radii of certain weighted shift matrices. Also we compute the numerical radius of a weighted shift operator on the Hardy space H-2. The purpose of this paper is to develop results in [7]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 88
页数:13
相关论文
共 50 条
  • [1] On the numerical range of some weighted shift operators
    Chakraborty, Bikshan
    Ojha, Sarita
    Birbonshi, Riddhick
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 640 : 179 - 190
  • [2] THE NUMERICAL RADII OF WEIGHTED SHIFT MATRICES AND OPERATORS
    Chien, Mao-Ting
    Sheu, Hue-An
    OPERATORS AND MATRICES, 2013, 7 (01): : 197 - 204
  • [3] The q-numerical range of 3-by-3 weighted shift matrices
    Chien, Mao-Ting
    Nakazato, Hiroshi
    APPLIED MATHEMATICS LETTERS, 2008, 21 (11) : 1199 - 1203
  • [4] ON THE NUMERICAL RANGES OF THE WEIGHTED SHIFT OPERATORS WITH GEOMETRIC AND HARMONIC WEIGHTS
    Vandanjav, Adiyasuren
    Undrakh, Batzorig
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 578 - 585
  • [5] On the numerical radius of weighted shift operators with generalized geometric weights
    Chakraborty, Bikshan
    Ojha, Sarita
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [6] Determinantal polynomials of some weighted shift matrices with palindromic weights
    Chakraborty, Bikshan
    Ojha, Sarita
    Birbonshi, Riddhick
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (03)
  • [7] Numerical ranges of weighted shift matrices
    Tsai, Ming Cheng
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) : 243 - 254
  • [8] The q-numerical radius of weighted shift operators with periodic weights
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) : 198 - 218
  • [9] Numerical range and numerical radius for some operators
    Karaev, M. T.
    Iskenderov, N. Sh.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (12) : 3149 - 3158
  • [10] Refinements for numerical ranges of weighted shift matrices
    Tsai, Ming-Cheng
    Gau, Hwa-Long
    Wang, Han-Chun
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (05) : 568 - 578