Stochastic MIMO Detector Based on the Markov Chain Monte Carlo Algorithm

被引:24
作者
Chen, Jienan [1 ]
Hu, Jianhao [1 ]
Sobelman, Gerald E. [2 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
[2] Univ Minnesota, Minneapolis, MN 55455 USA
关键词
Markov chain Monte Carlo (MCMC); multiple-input-multiple-output (MIMO) detector; stochastic logic; IMPLEMENTATION; COMPUTATION;
D O I
10.1109/TSP.2014.2301131
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A stochastic computing framework for a Markov Chain Monte Carlo (MCMC) multiple-input-multiple-output (MIMO) detector is proposed, in which the arithmetic operations are implemented by simple logic structures. Specifically, we introduce two new techniques, namely a sliding window generator (SWG) and a log-likelihood ratio based updating method (LUM), to achieve an efficient design. The SWG utilizes the variance in stochastic computations to increase the transition probability of the MCMC detector, while the LUM reduces the hardware cost. As a case study, we design a fully-parallel stochastic MCMC detector for a 4 x 4 16-QAM MIMO system using 130 nm CMOS technology. The proposed detector achieves a throughput of 1.5 Gbps with only a 0.2 dB performance loss compared to a traditional floating-point detection method. Our design has a 30% better ratio of gate count to scaled throughput compared to other recent MIMO detectors.
引用
收藏
页码:1454 / 1463
页数:10
相关论文
共 31 条
[1]   Survey of Stochastic Computing [J].
Alaghi, Armin ;
Hayes, John P. .
ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2013, 12
[2]  
Amiri K, 2007, CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, P1034
[3]   Stochastic Multiple Stream Decoding of Cortex Codes [J].
Arzel, Matthieu ;
Lahuec, Cyril ;
Jego, Christophe ;
Gross, Warren J. ;
Bruned, Yvain .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (07) :3486-3491
[4]   Stochastic neural computation I: Computational elements [J].
Brown, BD ;
Card, HC .
IEEE TRANSACTIONS ON COMPUTERS, 2001, 50 (09) :891-905
[5]   EXPLAINING THE GIBBS SAMPLER [J].
CASELLA, G ;
GEORGE, EI .
AMERICAN STATISTICIAN, 1992, 46 (03) :167-174
[6]  
Chen H., 2010, PROC GREAT LAKE S VL, P61
[7]   Convergence analyses and comparisons of Markov chain Monte Carlo algorithms in digital communications [J].
Chen, R ;
Liu, JS ;
Wang, XD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :255-270
[8]   UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM [J].
CHIB, S ;
GREENBERG, E .
AMERICAN STATISTICIAN, 1995, 49 (04) :327-335
[9]   Perfect sampling: A review and applications to signal processing [J].
Djuric, PM ;
Huang, YF ;
Ghirmai, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :345-356
[10]   A new class of soft MIMO demodulation algorithms [J].
Dong, B ;
Wang, XD ;
Doucet, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (11) :2752-2763