Bounding the chromatic number of squares of K4-minor-free graphs

被引:4
作者
Civan, Yusuf [1 ]
Deniz, Zakir [2 ]
Yetim, Mehmet Akif [1 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkey
[2] Duzce Univ, Dept Math, TR-81620 Duzce, Turkey
关键词
K-4-minor-free graph; Square graph; Chromatic number; PLANAR GRAPHS;
D O I
10.1016/j.disc.2019.03.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a K-4-minor-free graph with Delta(G) >= 3. We prove that if G contains no subgraph isomorphic to K-2(,r) for some r >= 1. then chi(G(2)) <= Delta(G) + r. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1894 / 1903
页数:10
相关论文
共 9 条
  • [1] Colorings of plane graphs: A survey
    Borodin, O. V.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (04) : 517 - 539
  • [2] 2-distance (Δ+2)-coloring of planar graphs with girth six and Δ ≥ 18
    Borodin, O. V.
    Ivanova, A. O.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (23-24) : 6496 - 6502
  • [3] Dirac G.A., 1952, J LONDON MATH SOC, V27, P85
  • [4] Hartke S.G., 2016, PREPRINT
  • [5] A Brooks-type bound for squares of K4-minor-free graphs
    Kostochka, Alexandr V.
    Ozkahya, Lale
    Woodall, Douglas R.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (23-24) : 6572 - 6584
  • [6] Coloring the square of a K4-minor free graph
    Lih, KW
    Wang, WF
    Zhu, XD
    [J]. DISCRETE MATHEMATICS, 2003, 269 (1-3) : 303 - 309
  • [7] The square of a planar cubic graph is 7-colorable
    Thomassen, Carsten
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 128 : 192 - 218
  • [8] Labelling planar graphs without 4-cycles with a condition on distance two
    Wang, Weifan
    Cai, Leizhen
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (12) : 2241 - 2249
  • [9] Wegner G., 1977, TECHNICAL REPORT