Biodegradation Test of SPS-LS blends as Polymer Electrolyte Membrane Fuel Cells

被引:1
|
作者
Putri, Zufira
Arcana, I. Made
机构
关键词
Electrolyte membrane; biodegradation; activated sludge; sulfonated polystyrene; POLYETHYLENE;
D O I
10.1063/1.4868797
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37 degrees C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM).
引用
收藏
页码:266 / 271
页数:6
相关论文
共 50 条
  • [1] Polymer Electrolyte Membrane Fuel Cells
    Antonio Asensio, Juan
    Pena, Juan
    Perez-Coll, Domingo
    Carlos Ruiz-Morales, Juan
    Marrero-Lopez, David
    Nunez, Pedro
    Ballesteros, Belen
    Canales-Vazquez, Jesus
    Borros, Salvador
    Gomez-Romero, Pedro
    AFINIDAD, 2011, 68 (554) : 246 - 258
  • [2] Minichannels in polymer electrolyte membrane fuel cells
    Trabold, TA
    HEAT TRANSFER ENGINEERING, 2005, 26 (03) : 3 - 12
  • [3] Polymer electrolyte membrane technology for fuel cells
    Rajendran, RG
    MRS BULLETIN, 2005, 30 (08) : 587 - 590
  • [4] Electrocatalysts for polymer electrolyte membrane fuel cells
    Song, Yujiang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [5] Polymer Electrolyte Membrane Technology for Fuel Cells
    Raj G. Rajendran
    MRS Bulletin, 2005, 30 : 587 - 590
  • [6] Characteristics of membrane humidifiers for polymer electrolyte membrane fuel cells
    Se-Kyu Park
    Eun Ae Cho
    In-Hwan Oh
    Korean Journal of Chemical Engineering, 2005, 22 : 877 - 881
  • [7] Proton conducting membrane for polymer electrolyte membrane fuel cells
    Wu, H.
    Wang, Y.X.
    Wang, S.C.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2001, 17 (04):
  • [8] Characteristics of membrane humidifiers for polymer electrolyte membrane fuel cells
    Park, SK
    Cho, EA
    Oh, IH
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2005, 22 (06) : 877 - 881
  • [9] Low Pressure Test Facility for Polymer Electrolyte Membrane Fuel Cells and First Measurements
    Schulze, M.
    Guelzow, E.
    Friedrich, K. A.
    FUEL CELL SEMINAR 2007, 2008, 12 (01): : 187 - 197
  • [10] Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells
    Oh, Sohyeong
    Yoo, Donggeun
    Myeonghwan, Kim
    Jiyong, Park
    Yeongjin, Choi
    Park, Kwonpil
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2023, 61 (04): : 517 - 522