On the asymptotic distributions of partial, sums of functionals of infinite-variance moving averages

被引:22
作者
Hsing, T
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 119260, Singapore
[2] Texas A&M Univ, College Stn, TX 77843 USA
关键词
central and noncentral limit theorems;
D O I
10.1214/aop/1022677460
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates the asymptotic distribution of the partial sum S-N = Sigma(n=1)(N)[K(X-n) - EK(X-n)], as N --> infinity, where {X-n} is a moving average stable process and K is a bounded and measurable function. The results show that SN follows a central or non-central limit theorem depending on the rate at which the moving average coefficients tend to 0.
引用
收藏
页码:1579 / 1599
页数:21
相关论文
共 15 条
[1]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[2]  
BRADLEY RC, 1986, DEPENDENCE PROBABILI, P162
[3]   CENTRAL LIMIT-THEOREMS FOR NON-LINEAR FUNCTIONALS OF GAUSSIAN FIELDS [J].
BREUER, P ;
MAJOR, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (03) :425-441
[4]  
Brockwell P. J., 1991, TIME SERIES THEORY M
[5]   POINT PROCESS AND PARTIAL SUM CONVERGENCE FOR WEAKLY DEPENDENT RANDOM-VARIABLES WITH INFINITE VARIANCE [J].
DAVIS, RA ;
HSING, TL .
ANNALS OF PROBABILITY, 1995, 23 (02) :879-917
[6]   NON-CENTRAL LIMIT-THEOREMS FOR NONLINEAR FUNCTIONALS OF GAUSSIAN FIELDS [J].
DOBRUSHIN, RL ;
MAJOR, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (01) :27-52
[7]  
Feller W., 1991, An Introduction to Probability Theory and Its Applications, VII
[8]  
GORODETSKII VV, 1977, THEOR PROBAB APPL+, V22, P411, DOI 10.1137/1122049
[9]   Limit theorems for functionals of moving averages [J].
Ho, HC ;
Hsing, T .
ANNALS OF PROBABILITY, 1997, 25 (04) :1636-1669
[10]  
Kokoszka PS, 1996, ANN STAT, V24, P1880