On the asymptotic distributions of partial, sums of functionals of infinite-variance moving averages

被引:22
作者
Hsing, T
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 119260, Singapore
[2] Texas A&M Univ, College Stn, TX 77843 USA
关键词
central and noncentral limit theorems;
D O I
10.1214/aop/1022677460
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates the asymptotic distribution of the partial sum S-N = Sigma(n=1)(N)[K(X-n) - EK(X-n)], as N --> infinity, where {X-n} is a moving average stable process and K is a bounded and measurable function. The results show that SN follows a central or non-central limit theorem depending on the rate at which the moving average coefficients tend to 0.
引用
收藏
页码:1579 / 1599
页数:21
相关论文
共 15 条
  • [1] Billingsley P, 1968, CONVERGE PROBAB MEAS
  • [2] BRADLEY RC, 1986, DEPENDENCE PROBABILI, P162
  • [3] CENTRAL LIMIT-THEOREMS FOR NON-LINEAR FUNCTIONALS OF GAUSSIAN FIELDS
    BREUER, P
    MAJOR, P
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (03) : 425 - 441
  • [4] Brockwell P. J., 1991, TIME SERIES THEORY M
  • [5] POINT PROCESS AND PARTIAL SUM CONVERGENCE FOR WEAKLY DEPENDENT RANDOM-VARIABLES WITH INFINITE VARIANCE
    DAVIS, RA
    HSING, TL
    [J]. ANNALS OF PROBABILITY, 1995, 23 (02) : 879 - 917
  • [6] NON-CENTRAL LIMIT-THEOREMS FOR NONLINEAR FUNCTIONALS OF GAUSSIAN FIELDS
    DOBRUSHIN, RL
    MAJOR, P
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (01): : 27 - 52
  • [7] Feller W., 1991, An Introduction to Probability Theory and Its Applications, VII
  • [8] GORODETSKII VV, 1977, THEOR PROBAB APPL+, V22, P411, DOI 10.1137/1122049
  • [9] Limit theorems for functionals of moving averages
    Ho, HC
    Hsing, T
    [J]. ANNALS OF PROBABILITY, 1997, 25 (04) : 1636 - 1669
  • [10] Kokoszka PS, 1996, ANN STAT, V24, P1880