Ultra low fouling zwitterionic polymers with a biomimetic adhesive group

被引:219
作者
Li, Guozhu [1 ,2 ]
Cheng, Gang [1 ]
Xue, Hong [1 ]
Chen, Shengfu [1 ]
Zhang, Fengbao [2 ]
Jiang, Shaoyi [1 ]
机构
[1] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[2] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
关键词
Zwitterionic; Catechol; Protein adsorption; Bacterial adhesion; Biofilm; Nonfouling;
D O I
10.1016/j.biomaterials.2008.08.021
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Biomimetic polymers with a zwitterionic moiety for ultra low fouling and a catechol end group for surface anchoring have been developed. Binding tests of the adhesive polymers on various surfaces, including amino (NH2), hydroxyl (OH), and methyl (CH3) terminated self-assembled monolayers (SAMs) along with bare gold, were performed under acidic and basic conditions. Protein adsorption from single protein solutions of fibrinogen, lysozyme, and complex media of 10-100% blood plasma and serum was measured using a surface plasmon resonance (SPR) sensor. Under optimized conditions, the coated surfaces are highly resistant to non-specific protein adsorption from both single protein solutions and blood serum/plasma. Furthermore, the 3-day accumulation of Pseudomonas aeruginosa on the coated surfaces was evaluated in situ in a laminar flow chamber. Results show that the coated surfaces are highly resistant to bacterial adhesion and biofilm formation. This work demonstrates a convenient and efficient method for using zwitterionic polymers with a catechol anchor group to achieve ultra low fouling surfaces via surface modification, for applications in complex media. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4592 / 4597
页数:6
相关论文
共 37 条
[1]   Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions [J].
Bearinger, JP ;
Terrettaz, S ;
Michel, R ;
Tirelli, N ;
Vogel, H ;
Textor, M ;
Hubbell, JA .
NATURE MATERIALS, 2003, 2 (04) :259-264
[2]   Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization [J].
Bernards, Matthew T. ;
Cheng, Gang ;
Zhang, Zheng ;
Chen, Shengfu ;
Jiang, Shaoyi .
MACROMOLECULES, 2008, 41 (12) :4216-4219
[3]   Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines [J].
Chang, Y ;
Chen, SF ;
Zhang, Z ;
Jiang, SY .
LANGMUIR, 2006, 22 (05) :2222-2226
[4]   Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials [J].
Chen, SF ;
Zheng, J ;
Li, LY ;
Jiang, SY .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (41) :14473-14478
[5]   Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces [J].
Cheng, Gang ;
Zhang, Zheng ;
Chen, Shengfu ;
Bryers, James D. ;
Jiang, Shaoyi .
BIOMATERIALS, 2007, 28 (29) :4192-4199
[6]   BACTERIAL BIOFILMS IN NATURE AND DISEASE [J].
COSTERTON, JW ;
CHENG, KJ ;
GEESEY, GG ;
LADD, TI ;
NICKEL, JC ;
DASGUPTA, M ;
MARRIE, TJ .
ANNUAL REVIEW OF MICROBIOLOGY, 1987, 41 :435-464
[7]   Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces [J].
Dalsin, JL ;
Hu, BH ;
Lee, BP ;
Messersmith, PB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (14) :4253-4258
[8]   Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: Effect of ethylene glycol side chain length [J].
Fan, Xiaowu ;
Lin, Lijun ;
Messersmith, Phillip B. .
BIOMACROMOLECULES, 2006, 7 (08) :2443-2448
[9]   Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces [J].
Feng, W ;
Brash, J ;
Zhu, SP .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2004, 42 (12) :2931-2942
[10]  
Ikeuchi M, 2005, HETEROCYCLES, V65, P2925