SAR Image Segmentation via Hierarchical Region Merging and Edge Evolving With Generalized Gamma Distribution

被引:19
|
作者
Qin, Xianxiang [1 ]
Zhou, Shilin [1 ]
Zou, Huanxin [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, Changsha 410073, Hunan, Peoples R China
关键词
Edge evolving; generalized gamma distribution (G Gamma D); hierarchical merging; Markov random field (MRF); segmentation; synthetic aperture radar (SAR);
D O I
10.1109/LGRS.2014.2307586
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter proposes a novel segmentation algorithm for synthetic aperture radar (SAR) images based on hierarchical region merging and edge evolving. To cope with the influence of speckle in SAR images, a statistical stepwise criterion, the loss of log-likelihood function (LLF) of image partition, is utilized for region merging. For this merging procedure, precise distributions of image partitions are essential, and we employ the generalized gamma distribution (G Gamma D) for modeling SAR images. Besides, the traditional region merging methods often suffer from the initial image partition that may lead to coarse segment shapes. It motivates us introducing a novel edge evolving scheme into the segmentation algorithm. It consists of two iterative steps: 1) the evolution of edge pixels with a maximum likelihood (ML) criterion and 2) that with a maximum a posterior (MAP) criterion using a Markov random field (MRF) model. The performance of the proposed algorithm is validated on two actual SAR images from the AIRSAR and EMISAR systems.
引用
收藏
页码:1742 / 1746
页数:5
相关论文
共 50 条
  • [1] Polarimetric SAR Image Segmentation Using Statistical Region Merging
    Lang, Fengkai
    Yang, Jie
    Li, Deren
    Zhao, Lingli
    Shi, Lei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (02) : 509 - 513
  • [2] SAR imagery segmentation by statistical region growing and hierarchical merging
    Carvalho, E. A.
    Ushizima, D. M.
    Medeiros, F. N. S.
    Martins, C. I. O.
    Marques, R. C. P.
    Oliveira, I. N. S.
    DIGITAL SIGNAL PROCESSING, 2010, 20 (05) : 1365 - 1378
  • [3] Fast Task-Specific Region Merging for SAR Image Segmentation
    Ma, Fei
    Zhang, Fan
    Xiang, Deliang
    Yin, Qiang
    Zhou, Yongsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] POLSAR IMAGE SEGMENTATION BASED ON HIERARCHICAL REGION MERGING AND SEGMENT REFINEMENT WITH WMRF MODEL
    Wang, Wei
    Zhai, Qinglin
    Ban, Yifang
    Zhang, Jun
    Wan, Jianwei
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4574 - 4577
  • [5] Context-Based Hierarchical Unequal Merging for SAR Image Segmentation
    Yu, Hang
    Zhang, Xiangrong
    Wang, Shuang
    Hou, Biao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (02): : 995 - 1009
  • [6] Parameter Estimation of Generalized Gamma Distribution Toward SAR Image Processing
    Zhang, Peng
    Li, Beibei
    Boudaren, Mohamed El Yazid
    Yan, Junkun
    Li, Ming
    Wu, Yan
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (05) : 3701 - 3717
  • [7] Polarimetric SAR segmentation based on region merging and spectral clustering
    Yang, Fan
    Yang, Jian
    Yin, Junjun
    Dianbo Kexue Xuebao/Chinese Journal of Radio Science, 2015, 30 (01): : 37 - 42
  • [8] Unsupervised Polarimetric SAR Image Segmentation and Classification Using Region Growing With Edge Penalty
    Yu, Peter
    Qin, A. K.
    Clausi, David A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (04): : 1302 - 1317
  • [9] Segmentation directed SAR image compression via hierarchical stochastic modeling
    Kim, AJ
    Krim, H
    Willsky, AS
    WAVELET APPLICATIONS IV, 1997, 3078 : 386 - 397
  • [10] SAR Sea Ice Image Segmentation Using Watershed with Intensity-based Region Merging
    Ijitona, Tolulope Bamidele
    Ren, Jinchang
    Hwang, Phil Byongjun
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2014, : 168 - 172