APPROXIMATING DYNAMICS OF A SINGULARLY PERTURBED STOCHASTIC WAVE EQUATION WITH A RANDOM DYNAMICAL BOUNDARY CONDITION

被引:17
作者
Chen, Guanggan [1 ]
Duan, Jinqiao [2 ]
Zhang, Jian [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Peoples R China
[2] Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
stochastic wave equation; random dynamical boundary condition; singular limit; convergence in distribution; weak convergence; SMOLUCHOWSKI-KRAMERS APPROXIMATION; BEHAVIOR; LIMIT;
D O I
10.1137/12088968X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with a singularly perturbed stochastic nonlinear wave equation with a random dynamical boundary condition. A splitting is used to establish the approximating equation of the system for a sufficiently small singular perturbation parameter. The approximating equation is a stochastic parabolic equation when the power exponent of the singular perturbation parameter is in [1/2, 1) but is a deterministic wave equation when the power exponent is in (1, +infinity). Moreover, if the power exponent of a singular perturbation parameter is bigger than or equal to 1/2, the same limiting equation of the system is derived in the sense of distribution, as the perturbation parameter tends to zero. This limiting equation is a deterministic parabolic equation.
引用
收藏
页码:2790 / 2814
页数:25
相关论文
共 33 条
[1]   SPECTRAL PROPERTIES OF AN ACOUSTIC BOUNDARY-CONDITION [J].
BEALE, JT .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (09) :895-917
[2]   ACOUSTIC SCATTERING FROM LOCALLY REACTING SURFACES [J].
BEALE, JT .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (02) :199-222
[3]   On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom [J].
Cerrai, S ;
Freidlin, M .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 135 (03) :363-394
[4]   Smoluchowski-Kramers approximation for a general class of SPDEs [J].
Cerrai, Sandra ;
Freidlin, Mark .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (04) :657-689
[5]  
Chen G., 2012, ARXIV12055948
[6]  
Chen G., 2011, J MATH PHYS, V52
[7]   ASYMPTOTIC BEHAVIOR FOR A STOCHASTIC WAVE EQUATION WITH DYNAMICAL BOUNDARY CONDITIONS [J].
Chen, Guanggan ;
Zhang, Jian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (05) :1441-1453
[8]   Asymptotics of solutions to semilinear stochastic wave equations [J].
Chow, Pao-Liu .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (02) :757-789
[9]  
Chow PL, 2002, ANN APPL PROBAB, V12, P361
[10]  
Chueshov I., 2008, DIFFERENTIAL INTEGRA, V17, P751