A bias-corrected histogram estimator for line transect sampling

被引:3
|
作者
Eidous, Omar [1 ]
Al-Eibood, Fahid [2 ]
机构
[1] Yarmouk Univ, Dept Stat, Irbid, Jordan
[2] King Abdulaziz Univ, Dept Stat, Jeddah, Saudi Arabia
关键词
Line transect sampling; Shoulder condition; Estimation of abundance; Histogram method; Smoothing parameter; DISTANCE MODELS;
D O I
10.1080/03610926.2017.1361987
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The classical histogram method has already been applied in line transect sampling to estimate the parameter f(0), which in turns is used to estimate the population abundance D or the population size N. It is well know that the bias convergence rate for histogram estimator of f(0) is o(h(2)) as h 0, under the shoulder condition assumption. If the shoulder condition is not true, then the bias convergence rate is only o(h). This paper proposed two new estimators for f(0), which can be considered as modifications of the classical histogram estimator. The first estimator is derived when the shoulder condition is assumed to be valid and it reduces the bias convergence rate from o(h(2)) to o(h(3)). The other one is constructed without using the shoulder condition assumption and it reduces the bias convergence rate from o(h) to o(h(2)). The asymptotic properties of the proposed estimators are derived and formulas for bin width are also given. The finite properties based on a real data set and an extensive simulation study demonstrated the potential practical use of the proposed estimators.
引用
收藏
页码:3675 / 3686
页数:12
相关论文
共 50 条
  • [31] Bias-corrected bootstrap and model uncertainty
    Steck, H
    Jaakkola, TS
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 521 - 528
  • [32] A bias-corrected precipitation climatology for China
    Ye, BS
    Yang, DQ
    Ding, YJ
    Han, TD
    Koike, T
    JOURNAL OF HYDROMETEOROLOGY, 2004, 5 (06) : 1147 - 1160
  • [33] Bias-corrected random forests in regression
    Zhang, Guoyi
    Lu, Yan
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (01) : 151 - 160
  • [34] Bias-corrected estimates of GED returns
    Heckman, James J.
    LaFontaine, Paul A.
    JOURNAL OF LABOR ECONOMICS, 2006, 24 (03) : 661 - 700
  • [35] A bias-corrected decomposition of the Brier score
    Ferro, C. A. T.
    Fricker, T. E.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (668) : 1954 - 1960
  • [36] DOUBLE JACKKNIFE BIAS-CORRECTED ESTIMATORS
    BERG, BA
    COMPUTER PHYSICS COMMUNICATIONS, 1992, 69 (01) : 7 - 14
  • [37] ON HISTOGRAM PARAMETER ESTIMATOR BIAS
    AKOPYAN, MV
    KLIMENKO, SV
    LEBEDEV, AA
    RAZUVAEV, EA
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1988, 272 (03): : 855 - 860
  • [38] SIZE BIAS IN LINE TRANSECT SAMPLING - A FIELD-TEST
    OTTO, MC
    POLLOCK, KH
    BIOMETRICS, 1990, 46 (01) : 239 - 245
  • [39] Bias-corrected estimators of scalar skew normal
    Zhang, Guoyi
    Liu, Rong
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 831 - 839
  • [40] Bias-corrected confidence bands in nonparametric regression
    Xia, YC
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 797 - 811