Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells

被引:72
|
作者
Nabovati, Aydin [1 ]
Hinebaugh, James [2 ]
Bazylak, Aimy [2 ]
Amon, Cristina H. [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Adv Thermal Fluids Optimizat Modelling & Simulat, Toronto, ON M5S 3G8, Canada
[2] Univ Toronto, Dept Mech & Ind Engn, Thermofluids Energy & Adv Mat TEAM Lab, Toronto, ON M5S 3G8, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Porosity heterogeneity; Binder & PTFE; Permeability; Tortuosity; Gas diffusion layer; Lattice Boltzmann method; EFFECTIVE THERMAL-CONDUCTIVITY; MASS-TRANSPORT; PEMFC GDLS; DISTRIBUTIONS; FLOW; SIMULATIONS; CONVECTION; RESISTANCE; INPLANE;
D O I
10.1016/j.jpowsour.2013.09.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we study the effect of porosity heterogeneity on the bulk hydrodynamic properties (permeability and tortuosity) of simulated gas diffusion layers (GDLs). The porosity distributions of the heterogeneous reconstructed samples are similar to those previously reported in the literature for Toray TGP-H 120 (TM), GDLs. We use the lattice Boltzmann method to perform pore-level flow simulations in the reconstructed GDL samples. Using the results of pore-level simulations, the effect of porosity distribution is characterized on the predicted in- and cross-plane permeability and tortuosity. It was found that porosity heterogeneity causes a higher in-plane permeability and lower in-plane tortuosity, while the effect is opposite in the cross-plane direction, that is a lower cross-plane permeability and a higher crossplane tortuosity. We further investigate the effect of adding poly-tetra-fluoro-ethylene (PTFE) & binder material to the reconstructed GDL samples. Three fiber volume percentages of 50, 75, and 100% are considered. Overall, increasing the fiber volume percentage reduces the predicted in- and cross-plane permeability and tortuosity values. A previously reported relationship for permeability of fibrous materials is fitted to the predicted permeability values, and the magnitude of the fitting parameter is reported as a function of fiber volume percentage. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 50 条
  • [1] Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells
    Kim, Kwang Nam
    Kang, Jung Ho
    Lee, Sang Gun
    Nam, Jin Hyun
    Kim, Charn-Jung
    JOURNAL OF POWER SOURCES, 2015, 278 : 703 - 717
  • [2] The effects of the composition of microporous layers on the permeability of gas diffusion layers used in polymer electrolyte fuel cells
    Orogbemi, O. M.
    Ingham, D. B.
    Ismail, M. S.
    Hughes, K. J.
    Ma, L.
    Pourkashanian, M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (46) : 21345 - 21351
  • [3] Sensitivity Analysis of Mass Transport Properties of Gas Diffusion Layers of Polymer Electrolyte Membrane Fuel Cells
    Tahseen, Siddiq Husain
    Milani, Abbas S.
    Hoorfar, Mina
    PROCEEDINGS OF THE ASME 10TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS 2012, 2012, : 149 - 155
  • [4] Effect of diffusion-layer porosity on the performance of polymer electrolyte fuel cells
    G. Selvarani
    A. K. Sahu
    P. Sridhar
    S. Pitchumani
    A. K. Shukla
    Journal of Applied Electrochemistry, 2008, 38 : 357 - 362
  • [5] Effect of porosity gradient in cathode gas diffusion layer of polymer electrolyte membrane fuel cells on the liquid water transport using lattice Boltzmann method
    Habiballahi, Mohammad
    Hassanzadeh, Hasan
    Rahnama, Mohammad
    Mirbozorgi, Seyed Ali
    Javaran, Ebrahim Jahanshahi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2021, 235 (03) : 546 - 562
  • [6] Effect of diffusion-layer porosity on the performance of polymer electrolyte fuel cells
    Selvarani, G.
    Sahu, A. K.
    Sridhar, P.
    Pitchumani, S.
    Shukla, A. K.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2008, 38 (03) : 357 - 362
  • [7] A numerical study on the performance of polymer electrolyte membrane fuel cells due to the variation in gas diffusion layer permeability
    Baek, Seung Man
    Koh, Soo Gon
    Kim, Kwang Nam
    Kang, Jung Ho
    Nam, Jin Hyun
    Kim, Charn-Jung
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2011, 25 (02) : 457 - 467
  • [8] A numerical study on the performance of polymer electrolyte membrane fuel cells due to the variation in gas diffusion layer permeability
    Seung Man Baek
    Soo Gon Koh
    Kwang Nam Kim
    Jung Ho Kang
    Jin Hyun Nam
    Charn-Jung Kim
    Journal of Mechanical Science and Technology, 2011, 25 : 457 - 467
  • [9] Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells
    Gostick, Jeff T.
    Ioannidis, Marios A.
    Fowler, Michael W.
    Pritzker, Mark D.
    JOURNAL OF POWER SOURCES, 2007, 173 (01) : 277 - 290
  • [10] Utilization of 3D printed carbon gas diffusion layers in polymer electrolyte membrane fuel cells
    Niblett, Daniel
    Guo, Zunmin
    Holmes, Stuart
    Niasar, Vahid
    Prosser, Robert
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (55) : 23393 - 23410