Ladder operator approach of special functions and the N-soliton solutions of the 2+1 dimensional finite toda equation

被引:3
|
作者
Nakamura, A [1 ]
机构
[1] Osaka Univ Foreign Studies, Div Linguist & Informat Sci, Mino, Osaka 5628558, Japan
关键词
ladder operator; finite Toda equation; soliton; Hirota bilinear method; hyper geometric function with two variables;
D O I
10.1143/JPSJ.73.838
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the generalized ladder operators of the special functions. This scheme can be applied to the problem of obtaining the N-soliton solutions of the 2 + 1 dimensional finite Toda equation. Analytically the N-soliton solutions can be expressed by the use of Hyper Geometric Functions with two variables.
引用
收藏
页码:838 / 842
页数:5
相关论文
共 50 条
  • [31] Construction of N-soliton solutions to (2+1)-dimensional Konopelchenko-Dubrovsky (KD) equations
    Salas, Alvaro H.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) : 7391 - 7399
  • [32] N-soliton solutions for (2+1)-dimensional nonlinear dissipative Zabolotskaya-Khokhlov system
    Li, BangQing
    Wang, Cong
    ADVANCED RESEARCH ON ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL, PTS 1 AND 2, 2012, 424-425 : 564 - +
  • [33] On soliton solutions of the (2+1) dimensional Boussinesq equation
    Rady, A. S. Abdel
    Osman, E. S.
    Khalfallah, Mohammed
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) : 3414 - 3419
  • [34] N-soliton and rogue wave solutions of (2+1)-dimensional integrable system with Lax pair
    Issasfa, Asma
    Lin, Ji
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (27):
  • [35] SOLUTIONS TO THE 2+1 TODA EQUATION
    VILLARROEL, J
    ABLOWITZ, MJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (03): : 931 - 941
  • [36] The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation
    Liu, Yaqing
    Wen, Xiao-Yong
    Wang, Deng-Shan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (04) : 947 - 966
  • [37] Breather, lump and N-soliton wave solutions of the (2+1)-dimensional coupled nonlinear partial differential equation with variable coefficients
    Li, Qianqian
    Shan, Wenrui
    Wang, Panpan
    Cui, Haoguang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 106
  • [38] The N-loop soliton solutions for (2+1)-dimensional Vakhnenko equation
    Li, Bang-Qing
    Ma, Yu-Lan
    Mo, Li-Po
    Fu, Ying-Ying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (03) : 504 - 512
  • [39] N-soliton solutions and localized structures for the (2+1)-dimensional Broer-Kaup-Kupershmidt system
    Wen, Xiao-Yong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) : 3346 - 3355
  • [40] N-soliton solutions and localized wave interaction solutions of a (3+1)-dimensional potential-Yu-Toda-Sasa-Fukuyamaf equation
    Ma, Hongcai
    Cheng, Qiaoxin
    Deng, Aiping
    MODERN PHYSICS LETTERS B, 2021, 35 (10):