Effect of all-but-one conditional analysis for eQTL isolation in peripheral blood

被引:3
作者
Brown, Margaret [1 ]
Greenwood, Emily [1 ]
Zeng, Biao [2 ]
Powell, Joseph E. [3 ]
Gibson, Greg [1 ]
机构
[1] Georgia Inst Technol, Sch Biol Sci, Ctr Integrat Genom, Krone EBB Bldg,950 Atlantic Dr, Atlanta, GA 30332 USA
[2] Icahn Sch Med Mt Sinai, New York, NY 10029 USA
[3] Garvan Weizmann Ctr Cellular Genom, Sydney, NSW 2010, Australia
关键词
gene expression; quantitative trait loci; conditional analysis; fine-mapping; credible set; GENOME-WIDE ASSOCIATION; MAPPING CAUSAL VARIANTS; GENE-EXPRESSION; LOCI; NETWORKS; THOUSANDS; BROWSER;
D O I
10.1093/genetics/iyac162
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Expression quantitative trait locus detection has become increasingly important for understanding how noncoding variants contribute to disease susceptibility and complex traits. The major challenges in expression quantitative trait locus fine-mapping and causal variant discovery relate to the impact of linkage disequilibrium on signals due to one or multiple functional variants that lie within a credible set. We perform expression quantitative trait locus fine-mapping using the all-but-one approach, conditioning each signal on all others detected in an interval, on the Consortium for the Architecture of Gene Expression cohorts of microarray-based peripheral blood gene expression in 2,138 European-ancestry human adults. We contrast these results with traditional forward stepwise conditional analysis and a Bayesian localization method. All-but-one conditioning significantly modifies effect-size estimates for 51% of 2,351 expression quantitative trait locus peaks, but only modestly affects credible set size and location. On the other hand, both conditioning approaches result in unexpectedly low overlap with Bayesian credible sets, with just 57% peak concordance and between 50% and 70% SNP sharing, leading us to caution against the assumption that any one localization method is superior to another. We also cross reference our results with ATAC-seq data, cell-type-specific expression quantitative trait locus, and activity-by-contact-enhancers, leading to the proposal of a 5-tier approach to further reduce credible set sizes and prioritize likely causal variants for all known inflammatory bowel disease risk loci active in immune cells.
引用
收藏
页数:14
相关论文
共 70 条
[1]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[2]   FINEMAP: efficient variable selection using summary data from genome-wide association studies [J].
Benner, Christian ;
Spencer, Chris C. A. ;
Havulinna, Aki S. ;
Salomaa, Veikko ;
Ripatti, Samuli ;
Pirinen, Matti .
BIOINFORMATICS, 2016, 32 (10) :1493-1501
[3]  
Birney E., 2007, Nature, V447, P799, DOI DOI 10.1038/NATURE05874
[4]   Incorporating Functional Annotations for Fine-Mapping Causal Variants in a Bayesian Framework Using Summary Statistics [J].
Chen, Wenan ;
McDonnell, Shannon K. ;
Thibodeau, Stephen N. ;
Tillmans, Lori S. ;
Schaid, Daniel J. .
GENETICS, 2016, 204 (03) :933-+
[5]   Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics [J].
Chen, Wenan ;
Larrabee, Beth R. ;
Ovsyannikova, Inna G. ;
Kennedy, Richard B. ;
Haralambieva, Iana H. ;
Poland, Gregory A. ;
Schaid, Daniel J. .
GENETICS, 2015, 200 (03) :719-+
[6]   Variations in DNA elucidate molecular networks that cause disease [J].
Chen, Yanqing ;
Zhu, Jun ;
Lum, Pek Yee ;
Yang, Xia ;
Pinto, Shirly ;
MacNeil, Douglas J. ;
Zhang, Chunsheng ;
Lamb, John ;
Edwards, Stephen ;
Sieberts, Solveig K. ;
Leonardson, Amy ;
Castellini, Lawrence W. ;
Wang, Susanna ;
Champy, Marie-France ;
Zhang, Bin ;
Emilsson, Valur ;
Doss, Sudheer ;
Ghazalpour, Anatole ;
Horvath, Steve ;
Drake, Thomas A. ;
Lusis, Aldons J. ;
Schadt, Eric E. .
NATURE, 2008, 452 (7186) :429-435
[7]   Interpreting type 1 diabetes risk with genetics and single-cell epigenomics [J].
Chiou, Joshua ;
Geusz, Ryan J. ;
Okino, Mei-Lin ;
Han, Jee Yun ;
Miller, Michael ;
Melton, Rebecca ;
Beebe, Elisha ;
Benaglio, Paola ;
Huang, Serina ;
Korgaonkar, Katha ;
Heller, Sandra ;
Kleger, Alexander ;
Preissl, Sebastian ;
Gorkin, David U. ;
Sander, Maike ;
Gaulton, Kyle J. .
NATURE, 2021, 594 (7863) :398-+
[8]   Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types [J].
Chun, Sung ;
Casparino, Alexandra ;
Patsopoulos, Nikolaos A. ;
Croteau-Chonka, Damien C. ;
Raby, Benjamin A. ;
De Jager, Philip L. ;
Sunyaev, Shamil R. ;
Cotsapas, Chris .
NATURE GENETICS, 2017, 49 (04) :600-+
[9]  
Dai Q, 2022, bioRxiv, DOI [10.1101/2022.03.30.486451, 10.1101/2022.03.30.486451v2, DOI 10.1101/2022.03.30.486451V2]
[10]   Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease [J].
de lange, Katrina M. ;
Moutsianas, Loukas ;
Lee, James C. ;
Lamb, Christopher A. ;
Luo, Yang ;
Kennedy, Nicholas A. ;
Jostins, Luke ;
Rice, Daniel L. ;
Gutierrez-Achuryl, Javier ;
Ji, Sun-Gou ;
Heap, Graham ;
Nimmo, Elaine R. ;
Edwards, Cathryn ;
Henderson, Paul ;
Mowat, Craig ;
Sanderson, Jeremy ;
Satsangi, Jack ;
Simmons, Alison ;
Wilson, David C. ;
Tremelling, Mark ;
Hart, Ailsa ;
Mathew, Christopher G. ;
Newman, William G. ;
Parkes, Miles ;
Lees, Charlie W. ;
Uhlig, Holm ;
Hawkey, Chris ;
Prescott, Natalie J. ;
Ahmad, Tariq ;
Mansfield, John C. ;
Anderson, Carl A. ;
Barrett, Jeffrey C. .
NATURE GENETICS, 2017, 49 (02) :256-261