Existence of harmonic maps into CAT(1) spaces

被引:0
作者
Breiner, Christine [1 ]
Fraser, Ailana [2 ]
Huang, Lan-Hsuan [3 ]
Mese, Chikako [4 ]
Sargent, Pam [5 ]
Zhang, Yingying [6 ]
机构
[1] Fordham Univ, Dept Math, Bronx, NY 10458 USA
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[4] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[5] York Univ, Dept Math & Stat, Toronto, ON M3J 13P, Canada
[6] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
MINIMAL IMMERSIONS; MAPPINGS; MANIFOLDS; SURFACES; BUNDLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi is an element of C-0 boolean AND W-1,W-2(Sigma,X) where Sigma is a compact Riemann surface, X is a compact locally CAT(1) space, and W-1,W-2(Sigma,X) is defined as in Korevaar-Schoen. We use the technique of harmonic replacement to prove that either there exists a harmonic map u : Sigma -> X homotopic to phi or there exists a nontrivial conformal harmonic map v : S-2 -> X. To complete the argument, we prove compactness for energy minimizers and a removable singularity theorem for conformal harmonic maps.
引用
收藏
页码:781 / 835
页数:55
相关论文
共 37 条
[1]  
Al'ber S.I., 1964, Soviet Math. Dokl, V5, P700
[2]  
Alber SI., 1967, SOV MATH DOKL, V9, P6
[3]  
Birkhoff G. D., 1927, Dynamical systems, V9
[4]   Dynamical systems with two degrees of freedom [J].
Birkhoff, George D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1917, 18 (1-4) :199-300
[5]   Regularity of harmonic maps from polyhedra to CAT(1) spaces [J].
Breiner, Christine ;
Fraser, Ailana ;
Huang, Lan-Hsuan ;
Mese, Chikako ;
Sargent, Pam ;
Zhang, Yingying .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (01)
[6]   Width and finite extinction time of Ricci flow [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
GEOMETRY & TOPOLOGY, 2008, 12 :2537-2586
[7]  
CORLETTE K, 1988, J DIFFER GEOM, V28, P361, DOI 10.4310/jdg/1214442469
[8]   Monotonicity properties of harmonic maps into NPC spaces [J].
Daskalopoulos, Georgios ;
Mese, Chikako .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2012, 11 (02) :225-243
[9]  
Daskalopoulos G, 2010, COMMUN ANAL GEOM, V18, P257
[10]   HARMONIC-MAPPINGS AND DISK BUNDLES OVER COMPACT KAHLER-MANIFOLDS [J].
DIEDERICH, K ;
OHSAWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1985, 21 (04) :819-833