Normal numbers and nested perfect necklaces

被引:9
作者
Becher, Veronica [1 ,2 ,3 ]
Carton, Olivier [4 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Comp, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, ICC, Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[4] Univ Paris Diderot, Inst Rech Informat Fondamentale, Paris, France
关键词
Normal numbers; Perfect necklaces; Low discrepancy; DISCREPANCY;
D O I
10.1016/j.jco.2019.03.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
M. B. Levin used Sobol-Faure low discrepancy sequences with Pascal triangle matrices modulo 2 to construct, a real number x such that the first N terms of the sequence (2(n)x mod 1)(n >= 1) have discrepancy O((log N)(2)/N). This is the lowest discrepancy known for this kind of sequences. In this note we characterize Levin's construction in terms of nested perfect necklaces, which are a variant of the classical de Bruijn sequences. Moreover, we show that every real number x whose binary expansion is the concatenation of nested perfect necklaces of exponentially increasing order satisfies that the first N terms of (2(n)x mod 1)(n >= 1) have discrepancy O((log N)(2)/N). For the order being a power of 2, we give the exact number of nested perfect necklaces and an explicit method based on matrices to construct each of them. The computation of the nth digit of the binary expansion of a real number built from nested perfect necklaces requires O(log n) elementary mathematical operations. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 16 条
  • [11] Korobov N., 1956, IZV AN SSSR M, V20
  • [12] Levin M. B., 1995, ABSTR AM MATH SOC, V16, P556
  • [13] Levin MB, 1999, ACTA ARITH, V88, P99
  • [14] Philipp W., 1974, Acta Arith., V26, P241
  • [15] Schmidt W., 1972, Acta Arith, V21, P45, DOI [10.4064/aa-21-1-45-50, DOI 10.4064/AA-21-1-45-50]
  • [16] Ugalde E, 2000, J THEOR NOMBR BORDX, V12, P165, DOI DOI 10.5802/jtnb.273