Arithmetic Identities Involving Bernoulli and Euler Numbers

被引:6
作者
Chu, Wenchang [1 ]
Wang, Chenying [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Bernoulli numbers; Euler numbers; trigonometric expansions; convolution formulae;
D O I
10.1007/s00025-009-0378-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By applying the formal power series method to elementary trigonometric sums, we establish four classes of arithmetic identities involving Bernoulli and Euler numbers, including the recent formulae due to Liu and Luo (2005).
引用
收藏
页码:65 / 77
页数:13
相关论文
共 50 条
[41]   SOME IDENTITIES RELATED TO EULERIAN POLYNOMIALS AND INVOLVING THE STIRLING NUMBERS [J].
Qi, Feng ;
Lim, Dongkyu ;
Guo, Bai-Ni .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (02) :467-480
[42]   Derivation of identities involving some special polynomials and numbers via generating functions with applications [J].
El-Mikkawy, Moawwad ;
Atlan, Faiz .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 :518-535
[43]   Bernoulli numbers with level 2 [J].
Komatsu, Takao .
AEQUATIONES MATHEMATICAE, 2025, 99 (01) :71-87
[44]   Convolution formulae for Bernoulli numbers [J].
Chu, Wenchang ;
Wang, Chenying .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (06) :437-457
[45]   Hypergeometric Euler numbers [J].
Komatsu, Takao ;
Zhu, Huilin .
AIMS MATHEMATICS, 2020, 5 (02) :1284-1303
[46]   Bernoulli numbers with level 2Bernoulli numbers with level 2T. Komatsu [J].
Takao Komatsu .
Aequationes mathematicae, 2025, 99 (1) :71-87
[47]   Generalized Bernoulli-Hurwitz numbers and the universal Bernoulli numbers [J].
Onishi, Y. .
RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (05) :871-932
[48]   On some properties of the generalized Bernoulli and Euler polynomials [J].
Brychkov, Yu A. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (10) :723-735
[49]   Some identities involving the central factorial numbers and Riemann zeta function [J].
Liu, GD .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (05) :715-725
[50]   Identities derived from a particular class of generating functions for Frobenius-Euler type Simsek numbers and polynomials [J].
Agyuz, Erkan .
FILOMAT, 2024, 38 (05) :1531-1545